Math, asked by devkumarsingh924, 9 months ago

Q.4
Solve the differential equation (x² + y²)dy/dx=xy​

Answers

Answered by hukam0685
2

Answer:

\frac{ {x}^{2} }{2 {y}^{2} }  - log |y|  + 2log |x|  = C\\ \:

Step-by-step explanation:

To Solve the differential equation,by inspection it is clear it can't be solved by separating variables.

So, it can be a homogeneous differential equation,let us try to convert the entire equation in y/x form

( {x}^{2}  +  {y}^{2} ) \frac{dy}{dx}  = xy \\  \\  {x}^{2} (1 +  \frac{ {y}^{2} }{ {x}^{2} } ) \frac{dy}{dx}  = xy \\  \\ (1 +  \frac{ {y}^{2} }{ {x}^{2} } ) \frac{dy}{dx}  =  \frac{y}{x} \\  \\  \frac{dy}{dx}  =  \frac{ \frac{y}{x} }{1 +  \frac{ {y}^{2} }{ {x}^{2} } } =f\big(\frac{y}{x}\big)\\  \\

put

 \frac{y}{x}  = v \\  \\ y = xv \\  \\  \frac{dy}{dx}  = v + x \frac{dv}{dx}  \\  \\ v + x \frac{dv}{dx}  =  \frac{ v }{1 + {v}^{2} }  \\  \\ x \frac{dv}{dx}  = \frac{ v }{1 + {v}^{2} } - v \\  \\ x \frac{dv}{dx}  = \frac{ v - v -  {v}^{3}  }{1 + {v}^{2} }\\  \\ x \frac{dv}{dx}  =\frac{ -  {v}^{3}  }{1 + {v}^{2} }\\ \\ separate \: the \: variables \\  \\  -  \frac{1 +  {v}^{2} }{ {v}^{ 3} } dv =  \frac{1}{x} dx \\  \\ integrate \: the \: above \: equation\\  \\   -  \int\frac{1 +  {v}^{2} }{ {v}^{ 3} } dv  =  \int\frac{1}{x} dx \\  \\  -  \int\frac{1}{ {v}^{ 3} } dv -  \int \frac{1}{v}dv  =  \int\frac{1}{x} dx \\  \\ apply \: power \: rule \: of \: integration \\  \\  \frac{1}{2 {v}^{2} }  - log \:  |v|  =  - log |x|  + C \\  \\ \frac{1}{2 {v}^{2} }  - log \:  |v|  +  log |x|   =  C \\  \\

Now undo substitution

\frac{1}{2 {( \frac{y}{x} })^{2} }  - log \:  | \frac{y}{x} |  +  log |x|   =  C\\  \\  \frac{ {x}^{2} }{2 {y}^{2} }  - log |y|  + log |x|  + log |x|  = C\\  \\ \frac{ {x}^{2} }{2 {y}^{2} }  - log |y|  + 2log |x|  = C \\  \\or\\\\ \frac{ {x}^{2} }{2 {y}^{2} }  + log \Big|\frac{x^2}{y}\Big|  = C

is the required solution.

Hope it helps you.

Answered by lublana
0

-\frac{x^2}{2y^2}+ln y=C

Step-by-step explanation:

(x^2+y^2)\frac{dy}{dx}=xy

\frac{dy}{dx}=\frac{xy}{x^2+y^2}

Let y=vx

Differentiate w.r.t x

\frac{dy}{dx}=x\frac{dv}{dx}+v

Substitute the values

v+x\frac{dv}{dx}=\frac{vx^2}{v^2x^2+x^2}

x\frac{dv}{dx}=\frac{vx^2}{x^2(1+v^2)}-v

x\frac{dv}{dx}=\frac{v}{1+v^2}-v=\frac{v-v-v^3}{1+v^2}

\frac{dv}{dx}=\frac{-v^3}{x(1+v^2)}

\frac{1+v^2}{v^3}dv=-\frac{1}{x}dx

\int(\frac{1}{v^3}+\frac{1}{v})dv=-\int\frac{dx}{x}

\int(v^{-3}+\frac{1}{v})dv=-\int\frac{dx}{x}

\frac{v^{-2}}{-2}+ln v=-ln x+C

Using the formula

\int x^ndx=\frac{x^{n+1}}{n+1}

\int\frac{dx}{x}=ln x

-\frac{1}{2v^2}+ln v+ln x=C

-\frac{1}{2v^2}+ln vx=C

Using the formula

lnx+ln y=ln xy

Substitute the values

-\frac{x^2}{2y^2}+ln y=C

#Learn more:

https://brainly.in/question/5815907:Answered by Mathdude

Similar questions