Math, asked by Scholar803, 11 months ago

Q.4. Solve the following [pair of equations by the elimination method:
(a) 2x – 3y =7 ; 5x + 2y = 10

Answers

Answered by aeipk9495b
1

Answer:

please follow me I will follow back

Attachments:
Answered by umiko28
6

ANSWER↪➡➡x=44/19 and y=15/-19

☢☢QUESTION➡Solve the following [pair of equations by the elimination method:

(a) 2x – 3y =7 ; 5x + 2y = 10

☢☢TO FIND➡find the value of

'x' and'y'

using elimination method...

 \bf\ 2x - 3y = 7   \purple{ -  -  -  -  -  -  - (1)}\\  \\  \bf\ 5x + 2y = 10 \green{ -  -  -  -  -  -  - (2)}\\  \\ (1) \times 2\bf\red{  \implies: }  2(2x - 3y) = 7 \times 2\\  \\  \bf\red{  \implies: }4x - 6y = 14  \orange{-  -  -  -  -  - (3)} \\  \\  \bf\ (2) \times 3 \bf\red{ \implies:}3(5x + 2y) = 10 \times 3  \\  \\ \bf\red{ \implies:}15x + 6y = 30  \red{-  -  -  -  -  -  -  - (4)} \\  \\  \underline{now } \\  \\eqn(4) + eqn(3)\bf\red{ \implies:} \\  \\ \bf\red{ \implies:}(15x + 6y) + (4x - 6y) = 30 + 14 \\  \\ \bf\red{ \implies:}15x  \cancel{+ 6y} + 4x  \cancel{- 6y }= 44 \\  \\ \bf\red{ \implies:}19x = 44 \\  \\ \bf\red{ \implies:} \boxed{x =  \frac{44}{19}} \\  \\  \underline{value \: of \: x \: put \: in \: (1)} \\  \\  \bf\ 2 \times  \frac{44}{19}  - 3y = 7 \\  \\ \bf\red{ \implies:} - 3y = 7 -  \frac{88}{19}  \\  \\ \bf\red{ \implies:} - 3y =  \frac{133 - 88}{19}  \\  \\ \bf\red{ \implies:} - 3y =  \frac{45}{19}  \\  \\   \bf\red{ \implies:}y =  \frac{45}{19 \times  - 3}  \\  \\ \bf\red{ \implies:} \boxed{y =  \frac{15}{ - 19} } \\  \\ \large\boxed{ \fcolorbox{red}{purple}{hope \: it \: help \: you}}

Similar questions