Math, asked by aj9686659, 7 months ago

Q.4] The angle of depression of two ships from the top of a lighthouse are 45 degree and 30 degree. If the ships are 120 metre apart, find the height of the lighthouse.प्र.4] दीपगृहाच्या टोकापासून दोन जहाजांचा होणारा अवनत कोन अनुक्रमे 45 ◦ आणि 30 ◦ आहे ,जर दोन जहाजांमधील अंतर 120 मी असेल तर दीपगृहाची उंची काढा . (√3 = 1.73) *

a) 40m
b) 44 m
c) 50 m
D) 60 m​

Answers

Answered by joshishivam905
1

plzz mark me as brainlisit

Attachments:
Answered by Anonymous
63

Given:

  • Angle of depression of two ships = 45° and 30°
  • ships are 120 metre apart

Find:

  • Height of the lighthouse

Solution:

 \sf In \: \triangle ABC,

 \sf \tan {45}^{ \circ}  =  \frac{AB}{BC}

 \sf \implies l =  \frac{h}{BC}

 \sf \implies BC = h....(i)

 \sf In \: \triangle ABD,

 \sf \tan {30}^{ \circ}  =  \frac{AB}{BD}

 \sf \implies  \frac{l}{ \sqrt{3} }  =  \frac{h}{120 +  BC }

 \sf \implies  h \sqrt{3}  = 120 +  BC

 \sf \implies  h =  \frac{120 +  BC}{ \sqrt{3} }

 \sf \implies  h =  \frac{120 +h}{ \sqrt{3} } \qquad [from \: eq(i)]

 \sf \implies  h \sqrt{3} = 120 +h

 \sf \implies  h \sqrt{3} - h = 120

 \sf \implies  h( \sqrt{3} - 1) = 120

 \sf \implies  h( 1.732- 1) = 120

 \sf \implies  0.732h = 120

 \sf \implies  h =  \frac{120}{0.732}  = 163.93m

 \sf \hookrightarrow  h = 163.9m

 \rule{221}{4}

Hence, the height of the lighthouse will be 163.9m

Attachments:
Similar questions