Math, asked by pr8223561, 10 months ago

Q.4. The parallel sides of a trapezium are
23 cm and 11 cm long, while its non-
parallel sides are 10 cm each. Find the area
of the trapezium.​

Answers

Answered by Anonymous
39

 \large\bf\underline{Given:-}

  • The parellel side's of trapezium are 23 cm and 11cm.
  • Non - parellel side's are 10cm each

 \large\bf\underline {\:To \: find:-}

  • Area of trapezium

 \huge\rm\underline{\bold\:Solution:-}

# Diagram was in the attachment.

Let :-

  • PQ = 23 cm
  • SR = 11cm
  • PS = QS = 10cm

Now,

≫ AQ = PQ - PA

≫ AQ = (23 - 11)cm

≫ AQ = 12cm

PB ⊥ PQ, So B is the mid point of AQ.

  • AB = ½ × AQ
  • AB = ½ × 12
  • AB = 6 cm

In right angled triangle ∆ RAB,

  • AR = 10cm
  • AB = 6cm

By Pythagoras theorem:-

➝ RB = √AR² - AB²

➝ RB = √10² - 6²

➝ RB = √100-36

➝ RB = √64

RB = 8cm

So, the distance between the parellel sides of trapezium is 8cm.

✝️Area of trapezium:-

= ½(sum of || sides)×(distance between the parellel sides)

»» ½(23 + 11) × 8

»» ½ × 34 × 8

»» 17 × 8

»» 136cm²

Hence ,

✝️ Area of trapezium = 136cm².

Attachments:
Answered by Anonymous
25

Answer:-

\sf{The \ area \ of \ trapezium \ is \ 136 \ cm^{2}}

Given:

  1. For trapezium,

  • Parallel sides are 23 cm and 11 cm long.

  • Non parallel sides are 10 cm each.

To find:

  • Area of the trapezium.

Solution:

\sf{\underline{\underline{Construction:}}}

\sf{1. \ Draw \ AE \ parallel \ to \ BC.}

\sf{2. \ Draw \ AF \ perpendicular \ to \ CD.}

\sf{In \ quadrilateral \ ABCD,}

\sf{AB=11 \ cm,}

\sf{BC=10 \ cm,}

\sf{CD=23 \ cm,}

\sf{EC=11 \ cm,}

\sf{AE=10 \ cm,}

\sf{...\because{Distance \ between \ two \ parallel \ lines}}

\sf{is \ constant. }

\sf{DE=DC-EC=23-11...[D-E-C]}

\sf{\therefore{DE=12 \ cm}}

\sf{In \ \triangle \ AED,}

\sf{DF=\frac{1}{2}\times \ DE}

\sf{DF=\frac{1}{2}\times12=6 \ cm}

\sf{...[\triangle \ AED \ is \ isosceles \ triangle.]}

\sf{By \ Apollonius \ theorem,}

\sf{AD^{2}+AE^{2}=2AF^{2}+2DF^{2}}

\sf{\therefore{10^{2}+10^{2}=2(AF^{2}+6^{2})}}

\sf{\therefore{2\times10^{2}=2(AF^{2}+6^{2})}}

\sf{\therefore{10^{2}=AF^{2}+6^{2}}}

\sf{\therefore{AF^{2}=100-36}}

\sf{\therefore{AF^{2}=64}}

\sf{On \ taking \ square \ root \ of \ both \ sides. }

\sf{AF=8 \ cm}

\sf{But, \ AF \ is \ perpendicular \ to \ DC}

\sf{\therefore{Height=AF=8 \ cm}}

\boxed{\sf{Area \ of \ trapezium=\frac{1}{2}\times(Sum \ of \ parallel \ sides)\times \ Height}}

\sf{\therefore{Area \ of \ trapezium=\frac{1}{2}\times(11+23)\times8}}

\sf{\therefore{Area \ of \ trapezium=4\times34}}

\sf{\therefore{Area \ of \ trapezium=136 \ cm^{2}}}

\sf\purple{\tt{\therefore{The \ area \ of \ trapezium \ is \ 136 \ cm^{2}}}}

Attachments:
Similar questions