Math, asked by anilirakshetti720, 7 months ago

Q 40 Determine the value of f(1) + g(1).​

Answers

Answered by riyansarda6
0

Answer:

f + g

Step-by-step explanation:

Value = f(1) + g(1)

= (f×1) + (g×1)

= (f) + (g)

= f + g

Answered by pulakmath007
0

The value of f(1) + g(1) = 1

Correct question : Determine the value of f(1) + g(1) when

\displaystyle \sf   \int  {x}^{2} cosx \: dx = f(x) \: sinx + g(x) \: cosx + c

Given :

\displaystyle \sf   \int  {x}^{2} cosx \: dx = f(x) \: sinx + g(x) \: cosx + c

To find :

The value of f(1) + g(1)

Formula Used :

Integration by Parts

\displaystyle \sf   \int \:f(x)g(x)dx = f(x) \int g(x)dx -  \int\bigg[f'(x) \int \: g(x)dx\bigg] dx

Solution :

Step 1 of 3 :

Integrate the LHS

\displaystyle \sf   \int  {x}^{2} cosx \: dx

\displaystyle \sf  =    {x}^{2} \int   cosx \: dx  -  \int \bigg[\frac{d}{dx} ( {x}^{2} )\int   cosx \: dx\bigg] dx

\displaystyle \sf  =    {x}^{2}  \: sin x  -  \int 2x \: sinx  \: dx

\displaystyle \sf  =    {x}^{2}  \: sin x  -   \bigg[2x\int  sinx  \: dx - \int \bigg \{ \frac{d}{dx} ( 2x)\int   sinx \: dx \bigg \}dx\bigg]

\displaystyle \sf  =    {x}^{2}  \: sin x  -   \bigg[ - 2x \: cosx -  \int \bigg \{ -  2cosx \bigg \}dx\bigg]

\displaystyle \sf  =    {x}^{2}  \: sin x  -   \bigg[ - 2x \: cosx  +   \int  2cosx dx\bigg]

\displaystyle \sf  =    {x}^{2}  \: sin x   +  2x \: cosx   - 2   \int  cosx dx

\displaystyle \sf  =    {x}^{2}  \: sin x   +  2x \: cosx   - 2   \: sinx  + c

\displaystyle \sf  =   ( {x}^{2}  - 2) \: sin x   +  2x \: cosx  + c

Step 2 of 3 :

Find f(x) and g(x)

\displaystyle \sf   \int  {x}^{2} cosx \: dx = f(x) \: sinx + g(x) \: cosx + c

\displaystyle \sf{ \implies }( {x}^{2}  - 2) \: sin x   +  2x \: cosx  + c= f(x) \: sinx + g(x) \: cosx + c

Comparing both sides we get

\displaystyle \sf  f(x) =  {x}^{2}  - 2 \:  \:  \:  \: and \: \:  \:   \: g(x) = 2x

Step 3 of 3 :

Determine the value of f(1) + g(1)

\displaystyle \sf  f(x) =  {x}^{2}  - 2 \:  \:  \:  \: and \: \:  \:   \: g(x) = 2x

Putting x = 1 we get

\displaystyle \sf  f(1) =  {1}^{2}  - 2 = 1 - 2 =  - 1

\displaystyle \sf  g(1) = 2 \times 1 = 2

Thus we get

\displaystyle \sf  f(1) + g(1)

\displaystyle \sf   =  - 1 + 2

\displaystyle \sf   =   1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

#SPJ3

Similar questions