Q. 5. If a, b, c and d are in continued proportion,
prove that:
a3+b3+c3/(b3 +c3+ d3) = a/d
Answers
Answered by
5
Step-by-step explanation:
Given:-
a, b, c and d are in continued proportion.
To find:-
prove that: a3+b3+c3/(b3 +c3+ d3) = a/d
Solution:-
a,b,c and d are in the continued proportion
=>a/b=b/c=c/d
Let a/b=b/c=c/d=k
a/b=k=>a=bk----------------(1)
b/c=k=>b=ck----------------(2)
c/d=k=>c=dk----------------(3)
from (2)&(3)
=>b=(dk)k=dk²
b=dk²-------------------------(4)
from(1)&(4)
a=(dk²)k=dk³
a=dk³-------------------------(5)
LHS:-
(a³+b³+c³)/(b³+c³+d³)
=>[(dk³)³+(dk²)³+(dk)³]/[(dk²)³+(dk)³+(d)³]
=>(d³k⁹+d³k⁶+d³k³)/(d³k⁶+d³k³+d³)
=>d³(k⁹+k⁶+k³)/d³(k⁶+k³+1)
=>(k⁹+k⁶+k³)/(k⁶+k³+1)
=>k³(k⁶+k³+1)/(k⁶+k³+1)
=>k³
(a³+b³+c³)/(b³+c³+d³)=k³-----(6)
RHS:-
a/d
=>dk³/d
=>k³
a/d=k³-----------------------------(7)
From(6)&(7)
LHS=RHS
(a³+b³+c³)/(b³+c³+d³)=a/d
Hence, Proved
Similar questions