Math, asked by aman2rajput007, 4 months ago

Q 5 please helpme guy ​

Attachments:

Answers

Answered by Yuseong
4

To find :

Squares of :-

 \sf{ (a) \: 199}   \\ \sf{ (b) \: 103} \\ \sf{ (c) \: 202} \\ \sf{ (d) \: 395} \\ \sf{ (e) \: 995}

Formula to be used :

 \sf{ \bullet  \:  {(x + y)}^{2}  =  {x}^{2} + 2xy +  {y}^{2}  } \\  \\  \sf{ \bullet  \:  {(x  - y)}^{2}  =  {x}^{2}  -  2xy +  {y}^{2}  }

Solution:

a) Identity used :

 \sf{ \bullet  \:  {(x  - y)}^{2}  =  {x}^{2}  -  2xy +  {y}^{2}  }

 \sf \red{ {(199)}^{2} } \\  \\ \sf { \longrightarrow {(200 - 1)}^{2} } \\  \\ \sf { \longrightarrow {200}^{2}  - (2 \times 200 \times 1) +  {1}^{2}  } \\  \\ \sf { \longrightarrow 40000  - 400 +  1  }  \\  \\ \sf { \longrightarrow 39600 +  1  } \\  \\  \sf \red { \longrightarrow 39601  }

_______________________________

b) Identity used:

 \sf{ \bullet  \:  {(x   +  y)}^{2}  =  {x}^{2}   +   2xy +  {y}^{2}  }

 \sf \red{ {(103)}^{2} } \\  \\ \sf { \longrightarrow {(100  + 3)}^{2} } \\  \\ \sf { \longrightarrow {100}^{2}   +  (2 \times 100 \times 3) +  {3}^{2}  } \\  \\ \sf { \longrightarrow 10000  + 600 + 9  }  \\  \\ \sf { \longrightarrow 10600 +  9  } \\  \\  \sf \red { \longrightarrow 10609  }

_______________________________

c) Identity used :

 \sf{ \bullet  \:  {(x   +  y)}^{2}  =  {x}^{2}   +   2xy +  {y}^{2}  }

 \sf \red{ {(202)}^{2} } \\  \\ \sf { \longrightarrow {(200  + 2)}^{2} } \\  \\ \sf { \longrightarrow {200}^{2}   +  (2 \times 200 \times 2) +  {2}^{2}  } \\  \\ \sf { \longrightarrow 40000  + 800 + 4  }  \\  \\ \sf { \longrightarrow 40800 +  4  } \\  \\  \sf \red { \longrightarrow 408004  }

_______________________________

d) Identity used :

 \sf{ \bullet  \:  {(x  - y)}^{2}  =  {x}^{2}  -  2xy +  {y}^{2}  }

 \sf \red{ {(395)}^{2} } \\  \\ \sf { \longrightarrow {(400 - 5)}^{2} } \\  \\ \sf { \longrightarrow {400}^{2}  - (2 \times 400 \times 5) +  {5}^{2}  } \\  \\ \sf { \longrightarrow 160000  - 4000 +  25  }  \\  \\ \sf { \longrightarrow 156000 +  25  } \\  \\  \sf \red { \longrightarrow 156025  }

________________________________

e) Identity used :

 \sf{ \bullet  \:  {(x  - y)}^{2}  =  {x}^{2}  -  2xy +  {y}^{2}  }

 \sf \red{ {(998)}^{2} } \\  \\ \sf { \longrightarrow {(1000 - 2)}^{2} } \\  \\ \sf { \longrightarrow {1000}^{2}  - (2 \times 1000 \times 2) +  {2}^{2}  } \\  \\ \sf { \longrightarrow 1000000  - 4000 +  4  }  \\  \\ \sf { \longrightarrow 996000 +  4  } \\  \\  \sf \red { \longrightarrow 996004  }

_______________________________

Know more!

  • Squares of odd numbers are always odd.

  • Squares of even numbers are always even.

  • Any number ending with 2,8,3 or 7 is never a perfect square.

  • For every natural number, n > 1,  \sf { 2n, {n}^{2} - 1, {n}^{2} +1 } is a pythagorean triplet.
Similar questions