Math, asked by shahistakhan02, 3 months ago

Q.5.
What is the value of k that (2x-1) may be a factor
of 4x^4-(k-1) x^3 + kx^2 - 6x + 1?

Answers

Answered by MagicalBeast
4

Given :

(2x-1) is factor of 4x² - (k-1)x³ + kx² - 6x + 1

To find :

k

Solution :

p(x) = 4x⁴ - (k-1)x³ + kx² - 6x + 1

if (2x-1) is factor of above given Equation,then

2x - 1 = 0

2x = 1

x = 1/2

Therefore , p(1/2) = 0

 \sf \: p\bigg( \dfrac{1}{2}  \bigg) \:  =  \: 4  \times {\bigg( \dfrac{1}{2}  \bigg)}^{4}  \:  -  \: (k - 1)  {\bigg( \dfrac{1}{2}  \bigg)}^{3}  + k \times \bigg( \dfrac{1}{2}  \bigg) ^{2}   \: -  \: 6 \times \bigg( \dfrac{1}{2}  \bigg) \:  +  \: 1 \\ \\   \\  \sf \implies \: 0 \:  =  \: 4  \times {\bigg( \dfrac{1}{16}  \bigg)}  \:  -  \: (k - 1)  {\bigg( \dfrac{1}{8}  \bigg)} + k \times \bigg( \dfrac{1}{4}  \bigg)   \: -  \: 6 \times \bigg( \dfrac{1}{2}  \bigg) \:  +  \: 1 \\  \\  \\ \sf \implies \: 0 \:  =  \:  \dfrac{1}{4}   \:  -  \: { \dfrac{(k - 1)}{8}  } + \dfrac{k}{4}    \: -  \: 3 \:  +  \: 1 \\  \\  \\ \sf \implies \: 0 \:  =  \:  \dfrac{1}{4}   \:  -  \: { \dfrac{(k - 1)}{8}  } + \dfrac{k}{4}    \: -  2 \\  \\  \\ \sf \implies \:   2 -  \dfrac{1}{4}   \:    =  \: \dfrac{k}{4}   \:  -  \:  { \dfrac{(k - 1)}{8}  }   \\  \\  \sf \: take \: lcm \: \\  \\ \sf \implies \:   \dfrac{(2 \times 4) - (1 \times 1)}{4}   \:    =  \: \dfrac{(k \times 2)  \:  \:  - (1\times (k - 1) \:  \: )}{8}   \\  \\  \sf \implies \:   \dfrac{8 - 1}{4}   \:    =  \: \dfrac{2k    \:  -  (k - 1) }{8}    \\  \\ \sf \implies \:   \dfrac{7}{4}  \times 8 = 2k - k + 1 \\  \\ \sf \implies \:  7 \times 2 = k + 1 \\  \\ \sf \implies \:  14 = k + 1 \\  \\ \sf \implies \: k  \: = 14 - 1 \\  \\ \sf \implies \:  k \:  = 13

ANSWER :

k = 13

Similar questions