Math, asked by abhinavsharmaother, 2 months ago

Q 53 x²-x-a(a+1)=0 Find X

Attachments:

Answers

Answered by negivardhan993
1

Explanation:

\mathsf{x^2-x-a(a+1)=0}

\mathsf{==>x^2-x-a^2-a=0}

\mathsf{==>x^2-a^2-x-a=0}

\mathsf{==>(x+a)(x-a)-(x+a)=0}

\mathsf{==>(x+a)[(x-a)-1]=0}

\mathsf{==>(x+a)(x-a-1)=0}

\mathsf{x=-a\:OR\:x=a+1}

Verification:

When x = -a,

\mathsf{x^2-x-a(a+1)=0}

\mathsf{==>(-a)^2-(-a)-a(a+1)=0}

\mathsf{==>a^2+a-a^2-a=0}

\mathsf{==>0=0}

When x = a + 1,

\mathsf{x^2-x-a(a+1)=0}

\mathsf{==>(a+1)^2-(a+1)-a(a+1)=0}

\mathsf{==>(a+1)[(a+1)-1-a]=0}

\mathsf{==>(a+1)\times0=0}

∴ LHS = RHS

Answer: x = -a OR x = a + 1

I hope this helps. :D

Similar questions