Math, asked by abdullahtalpur45, 8 months ago

Q.6) The diagram shows (triangle)ABC with vertices A(-2, 1),
B(1,1) and C(3, 4). Given that K is the point (t, 4) and the area of
(triangle)BCK is 12 units², find the possible values of t.​

Answers

Answered by TakenName
6

Question: The area of ΔBCK is 12 square units when three points B(1, 1), C(3, 4), and K(t, 4) are given. What are the values of t?

The area of a triangle is equal to \sf{\dfrac{1}{2} \times height\times base}.

The base \sf{\overline{BC}} is equal to \sf{\sqrt{(3-1)^2+(4-1)^2} =\sqrt{13} } units.

So the triangle area is equal to \sf{\dfrac{1}{2} \times height\times \sqrt{13}} which is given as 12 units².

\sf{\dfrac{1}{2} \times height\times \sqrt{13}=12}

\sf{height=12\times\dfrac{2}{\sqrt{13} } }

\sf{\therefore height=\dfrac{24}{\sqrt{13} }\;units}

The height is the shortest distance from a point to a line.

When a line is given in the form of \sf{ax+by+c=0}, and a point is \sf{P(x_1,\;y_1)} the distance is \sf{\dfrac{|ax_1+by_1+c|}{\sqrt{a^2+b^2} } }.

\sf{\overleftrightarrow{BC}:\;y=\dfrac{3}{2}x-\dfrac{1}{2}}

\sf{\overleftrightarrow{BC}:\;2y=3x-1}

\sf{\overleftrightarrow{BC}:\;3x-2y-1=0} and a given point is K(t, 4).

According to the form, the distance is equal to \sf{\dfrac{|3\times t-2\times4-1|}{\sqrt{(3)^2+(-2)^2} } }.

\sf{\dfrac{|3t-9|}{\sqrt{13} } =\dfrac{24}{\sqrt{13} } }

\sf{|3t-9|=24}

\sf{3|t-3|=24}

\sf{|t-3|=8}

\sf{t-3=\pm8}

\sf{\therefore t=11\;or\;t=-5}

Similar questions