Math, asked by thunderbird3112, 1 day ago

Q.6. The values of p and q if (x+2) is a factor of f(x) =x3 + px2 + qx+6
and f(1) =24 are
a) p = 3, q =5
b) p = 6, q = 11
c) p = 5, q =6
d) p = -2, q =7

Answers

Answered by SparklingBoy
67

Answer :

Option (b) p = 6, q = 11 is the correct option.

Step by Step Explanation :

As we are given that,

(x + 2) is a factor of f(x) = x³ + px² + qx + 6

Therefore x = -2 will be a zero of f(x) which means :

\Large \bigstar  \large \:  \:  \:  \underline{ \boxed{ \bf f( - 2) = 0 }} \\   \\

From above we get ;

  \\  \rm ( - 2) {}^{3}  + p{( - 2)}^{2} + q(  - 2)  + 6 = 0  \\  \\

:\longmapsto \rm  - 8 + 4p - 2q + 6 =  0\\  \\

:\longmapsto \rm 4p - 2q - 2 = 0 \\  \\

∆ Dividing whole equation by 2 ;

 \\  \rm2p - q - 1 = 0 \\  \\

 \green{:\longmapsto \bf  \underline{\underline{ \blue{ 2p - q = 1}}}} \:  \:  -  -  -  - (1) \\  \\

Also we have given that :

\Large \bigstar  \large \:  \:  \:  \underline{ \boxed{ \bf f(1) = 24}} \\   \\

From above we get ;

 \\  \rm(1 {)}^{3}  + p {(1)}^{2}  + q(1) + 6 = 24 \\  \\

:\longmapsto \rm 1 + p + q + 6 = 24 \\  \\

:\longmapsto \rm p + q + 7 = 24 \\  \\

:\longmapsto \rm p + q = 24 - 7 \\  \\

 \green{:\longmapsto \bf  \underline{\underline{ \blue{ p + q = 17}}}} \:  \:  -  -  -  - (2) \\  \\

➡️ Adding (1) and (2) :

\\:\longmapsto \rm2p  -  q + p  + q = 1 + 17 \\  \\

:\longmapsto \rm 3p = 18 \\  \\

:\longmapsto \rm p =   \cancel\frac{18}{3} \\  \\

 \large \green{:\longmapsto \bf  \underbrace{ \underline{\underline{ \blue{ p = 6}}}}} \\  \\

➡️ Putting value of p in (2) :

 \\ :\longmapsto \rm  6+ q = 17 \\  \\

:\longmapsto \rm q = 17 - 6 \\  \\

 \large \green{:\longmapsto \bf  \underbrace{ \underline{\underline{ \blue{ q = 11}}}}} \\  \\

Answered by MяMαgıcıαη
89

\Large\:{\bf{\dag}\:{\underline{\underline{\frak{AnswEr\::}}}}}

Given that: (x + 2) is a factor of f(x) = + px² + qx + 6 and f(1) = 24.

Need to find: The values of p and q?

Let's do it!!

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

✇ As we know that (x + 2) is a factor of f(x) = x³ + px² + qx + 6. Therefore;

➧ x + 2 = 0

➧ x = 0 - 2

x = -2

So,

➧ f(-2) = (-2)³ + p(-2)² + q(-2) + 6 = 0

➧ -8 + 4p - 2q + 6 = 0

➧ 4p - 2q - 8 + 6 = 0

➧ 4p - 2q - 2 = 0

➧ 2(2p - q - 1) = 0

➧ 2p - q - 1 = 0/2

2p - q - 1 = 0 ⠀⠀⠀

✇ Again we know that f(1) = 24. Therefore;

➧ f(1) = (1)³ + p(1)² + q(1) + 6 = 24

➧ 1 + 1p + 1q + 6 = 24

➧ p + q + 1 + 6 = 24

➧ p + q + 7 = 24

➧ p + q + 7 - 24 = 0

p + q - 17 = 0 ⠀⠀⠀⠀—

~ By adding and we get ::

➧ (2p - q - 1) + (p + q - 17) = 0 + 0

➧ 2p - q - 1 + p + q - 17 = 0

➧ 2p + p - q + q - 1 - 17 = 0

➧ 3p - 18 = 0

➧ 3p = 0 + 18

➧ 3p = 18

➧ p = 18/3

p = 6

~ Putting p = 6 in ::

➧ 2(6) - q - 1 = 0

➧ (2 × 6) - q - 1 = 0

➧ 12 - q - 1 = 0

➧ -q - 1 + 12 = 0

➧ -q + 11 = 0

➧ -q = 0 - 11

➧ -q = -11

q = 11

The values of p and q is 6 and 11.

\rule{200}7

Similar questions