Math, asked by tarkpatel0194, 5 months ago

Q. 7
Find the roots of the following equation by Factorisation
x+1/x-1 - x-1 / x+1 =5/6
x not equal to 1 ,-1​

Answers

Answered by vipashyana1
25

Answer:

x = 5 \: and \: x =  \frac{1}{5}

Step-by-step explanation:

 \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1}  =  \frac{5}{6}

 \frac{ {(x + 1)}^{2} -  {(x - 1)}^{2}  }{(x - 1)(x + 1)}  =  \frac{5}{6}

 \frac{( {x}^{2} + 1 + 2x) - ( {x}^{2}  + 1 - 2x )}{x(x +1) - 1(x + 1)}  =  \frac{5}{6}

 \frac{ {x}^{2}  + 1 + 2x -  {x}^{2} - 1 + 2x }{ {x}^{2} + x - x - 1 }  =  \frac{5}{6}

 \frac{ {x}^{2} -  {x}^{2} + 1 - 1 + 2x + 2x  }{ {x}^{2} - 1 }  =  \frac{5}{6}

 \frac{4x}{ {x}^{2} - 1 }  =  \frac{5}{6}

5( {x}^{2}  - 1) = 6(4x)

5 {x}^{2}  - 5 = 24x

5 {x}^{2}  - 24x - 5 = 0

5 {x}^{2}  - 25x + x - 5 = 0

(5 {x}^{2}  - 25x) + (x - 5) = 0

5x(x - 5) + 1(x - 5) = 0

(x - 5)(5x - 1) = 0

(x - 5 = 0)(5x - 1 = 0)

x = 5 \: and \: x =  \frac{1}{5}

Similar questions