Math, asked by ravindravyas5, 6 months ago


Q.7
Find the roots of the following equation by Factorisation.
x+1/x-1 - x-1/x+1 = 5/6 ; x is not equal to 1, -1​

Answers

Answered by mantu9000
0

We have:

\dfrac{x+1}{x-1} -\dfrac{x-1}{x+1} =\dfrac{5}{6}, x ≠ 1 or - 1

We have to find, the value of x.

Solution:

\dfrac{x+1}{x-1} -\dfrac{x-1}{x+1} =\dfrac{5}{6}

\dfrac{(x+1)^2-(x-1)^2}{(x-1)(x+1)}  =\dfrac{5}{6}

Using the algebraic identity:

(a+b)^{2} -(a-b)^{2}=4ab and

(a+b)(a-b)=a^{2} -b^{2}

\dfrac{4x}{x^2-1}  =\dfrac{5}{6}

By cross multiplication, we get

5x^{2} - 5 = 24x

⇒ 5x^{2}  - 24x - 5 = 0

To solve by factorisation method, we get

5x^{2}  - 25x + x - 5 = 0

⇒ 5x(x - 5) + 1(x - 5) = 0

⇒ (x - 5)(5x + 1) = 0

⇒ x - 5 = 0 or, 5x + 1 = 0

⇒ x - 5 = 0 ⇒ x = 5

or,  5x + 1 = 0 ⇒ x = -\dfrac{1}{5}

∴ x = 5 or, -\dfrac{1}{5}

Answered by pulakmath007
2

SOLUTION

TO SOLVE

 \displaystyle \sf{ \frac{x + 1}{x - 1} - \frac{x - 1}{x + 1} = \frac{5}{6} \: \: \: \: \: \: x \ne 1, - 1}

EVALUATION

 \displaystyle \sf{ \frac{x + 1}{x - 1} - \frac{x - 1}{x + 1} = \frac{5}{6} \: }

 \displaystyle \sf{ \implies \: \frac{ { (x + 1)}^{2} - {(x - 1)}^{2} }{(x + 1)(x - 1)} = \frac{5}{6} \: }

 \displaystyle \sf{ \implies \: \frac{ 4.x.1 }{ {x}^{2} - 1} = \frac{5}{6} \: }

 \displaystyle \sf{ \implies \: \frac{ 4x }{ {x}^{2} - 1} = \frac{5}{6} \: }

 \displaystyle \sf{ \implies \: 5 {x}^{2} - 5 = 24x \: }

 \displaystyle \sf{ \implies \: 5 {x}^{2} - 24x - 5 = 0 \: }

 \displaystyle \sf{ \implies \: 5 {x}^{2} - 25x + x - 5 = 0 \: }

 \displaystyle \sf{ \implies \: 5x(x - 5) + 1(x - 5) = 0 \: }

 \displaystyle \sf{ \implies \: (x - 5) (5x + 1) = 0 \: }

We know that if product of two real numbers are zero then they are separately zero

 \displaystyle \sf{ \implies \: (x - 5) = 0 \: \: or \: \: (5x + 1) = 0 \: }

Now

 \displaystyle \sf{ (x - 5) = 0 \: \: gives \: \: x = 5\: }

 \displaystyle \sf{ (5x + 1) = 0 \: \: gives \: \: x = - \frac{1}{5} }

Hence the required solution is

 \displaystyle \sf{ x = \: \: 5 \: , - \frac{1}{5} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the roots of the quadratic equation 6x2 +5x + 1 =0 by method of completing the squares.

https://brainly.in/question/30446963

2. The polynomial f(x) = x⁴ - 2x³ - px² + q is divisible by (x-2)². Find the values p and q. Hence, solve the equation.

https://brainly.in/question/27895807

Similar questions