Math, asked by hiihahahah2gmailcom, 2 months ago

Q-7 The area of a square of side 6 cm is same as that of a rectangle of length
12 cm. What is the breadth of the rectangle?​

Answers

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{side \: of \: square \:  = 6 \: cm} \\ &\sf{length \: of \: rectangle \:  =  \: 12 \: cm}\\ &\sf{Area_{(square)} \:  =  \: Area_{(rectangle)}} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\:find - \begin{cases} &\sf{Breadth \: of \: rectangle}  \end{cases}\end{gathered}\end{gathered}

\large\underline{\bold{Solution-}}

We know,

 \boxed{ \bf \: Area_{(rectangle)} = Length \times Breadth}

and

 \boxed{ \bf \: Area_{(square)} =  {(side)}^{2} }

Now,

Given that

  • Side of square = 6 cm

So,

 \rm :\longmapsto\:\bf \: Area_{(square)} =  {(side)}^{2}

\rm :\longmapsto\:Area_{(square)} =  {6}^{2}

\rm :\longmapsto\:Area_{(square)} = 36 \:  {cm}^{2}  -  - (1)

Also,

  • Length of rectangle = 12 cm

  • Let Breadth of rectangle be 'x' cm

So,

\rm :\longmapsto\: \bf \: Area_{(rectangle)} = Length \times Breadth

\rm :\longmapsto\:Area_{(rectangle)} = 12 \times x

\rm :\longmapsto\:Area_{(rectangle)} = 12x \:  {cm}^{2}

Now,

\large\underline{\bold{According \:  to \:  statement-}}

\rm :\longmapsto\:Area_{(rectangle)} = Area_{(square)}

On substituting the values from equation (1) and (2), we get

\rm :\longmapsto\:12x = 36

\rm :\longmapsto\:x = 3 \: cm

 \boxed{\bf\implies \: Breadth \: of \: rectangle \:  =  \: 3 \: cm}

Additional Information :-

 (1). \: \boxed{ \tt{Perimeter_{(rectangle)} = 2(Length + Breadth)}}

(2). \:  \boxed{ \tt{Perimeter_{(square)} = 4 \times side}}

(3). \:  \boxed{ \tt{Area_{(square)} = \dfrac{1}{2} {(diagonal)}^{2}  }}

(4). \:  \boxed{ \tt{diagonal_{(rectangle)} =  \sqrt{ {Length}^{2} +  {Breadth}^{2}  } }}

(5). \:  \boxed{ \tt{diagonal_{(square)} =  \sqrt{2}  \times side}}

Similar questions