Math, asked by aaryaangadip12, 4 months ago

Q 75. The marked price of an article is 20% higher than its cost price. Then the percentage of profit gained after allowing an
discount of 6.25% is
Oa) 21%
Ob) 15%
Oc) 18%
Od) 12.5%​

Answers

Answered by Anonymous
14

Answer:

  • The percentage of profit gained after allowing an discount of 6.25% is 12.5%

Given:

  • The marked price of an article is 20% higher than its cost price.

To find:

  • Then the percentage of profit gained after allowing an discount of 6.25% is?

Solution:

Let the CP be Rs. 100

Then MP will be 100 + 20 = Rs. 120

Discount = 6.25% =  \bf \dfrac{6.25}{100} \times 120

 \bf \dfrac{6.25}{10} \times 12

 \bf \dfrac{6.25}{100} \times 120

➥ 0.00625 × 120

➥ Rs. 7.5

We know that,

SP = MP - Discount %

➥ 120 - 7.5

➥ 112.5

Profit = SP - CP

➥ 112.5 - 100

➥ Rs. 12.5

Profit % =  \bf \dfrac{12.5}{100}  \times 100

➥ Profit % = 12.5 %

Answered by Anonymous
5

Correct Question-:

  • The marked price of an article is 20% higher than its cost price. Then the percentage of profit gained after allowing an discount of 6.25% is ___________.

AnswEr -:

  • \underline{\boxed{\star{\sf{\blue{  \:The\: percentage\: of \:profit\: gained \:after\: allowing\: an\:discount\: of \:6.25\%\:= 12.5\%}}}}}
  • \underline{\boxed{\star{\sf{\blue{  \:The\: Option (D)\:or\: 12.5\%\:is\:correct\:.}}}}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{The \:marked\: price\: of \:an\: article \:is \:20\%\: higher\: than \:its\: cost \:price} & \\\\ \sf{  The\:discount \:  \:given\:is\:of\:6.25 \%}\end{cases} \\\\
  •  \frak{To \:Find\: -:} \begin{cases} \sf{ The\: percentage\: of \:profit\: gained \:after\: allowing\: an\:discount\: of \:6.25 \%}\end{cases} \\\\

Solution-:

  • Let the Cost Price or C.P be Rs.100
  • Then ,
  • The marked price of an article is 20% higher than its cost price.
  • \implies{\sf{\large {Marked \: Price  = 100 +  20\% of 100 }}}
  • \implies{\sf{\large {Marked \: Price  = 100 + \frac {20}{100} × 100 }}}
  • \implies{\sf{\large {Marked \: Price  = 100 + 20 }}}
  • \implies{\sf{\large {Marked \: Price  = Rs.120 }}}

\underline{\boxed{\star{\sf{\blue{  Marked \:Price= Rs.120.}}}}}

Now ,

  • Discount Given of 6.25% on Marked Price = Rs.120
  • \implies{\sf{\large {Discount \: Price  =   6.25\% of 120 }}}
  • \implies{\sf{\large {Discount \: Price  = \frac{6.25}{100} × 120 }}}
  • \implies{\sf{\large {Discount \: Price  = \frac{6.25}{10} × 12 }}}
  • \implies{\sf{\large {Discount \: Price  = 0.625 × 12 }}}
  • \implies{\sf{\large {Discount \: Price  = Rs.7.5 }}}

\underline{\boxed{\star{\sf{\blue{  Discount\:Price= Rs.7.5.}}}}}

We know That ,

  • \underline{\boxed{\star{\sf{\blue{  Selling \:Price= Marked\:Price - \: Discount.}}}}}
  • Here -:
  • Marked Price = Rs.120
  • Discount Price = Rs.7.5

Now ,

  • \implies{\sf{\large {Selling \: Price  =   120 - 7.5 }}}
  • \implies{\sf{\large {Selling \: Price  =   112.5 }}}

Now ,

  • \underline{\boxed{\star{\sf{\blue{  Profit \:= Selling \:Price - \: Cost\:Price.}}}}}
  • Here ,
  • Selling Price = Rs . 112.5
  • Cost Price = Rs . 100

Now ,

  • \implies{\sf{\large { \: Profit  =   112.5 - 100 }}}
  • \implies{\sf{\large { \: Profit  =   Rs.12.5 }}}

\underline{\boxed{\star{\sf{\blue{  \:Profit= Rs.12.5.}}}}}

Then ,

  • \underline{\boxed{\star{\sf{\blue{  Profit \:\%=  \frac {Profit× 100}{Cost\: Price}.}}}}}
  • Here ,
  • Profit = Rs.12.5
  • Cost Price = Rs.100

Now ,

  • \implies{\sf{\large {Profit \: Percentage  = \frac{12.5×100}{100}  }}}
  • \implies{\sf{\large {Profit \: Percentage  = 12.5\%  }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{  \:Profit\: Percentage\:= 12.5\%.}}}}}

Hence,

  • \underline{\boxed{\star{\sf{\blue{  \:The\: percentage\: of \:profit\: gained \:after\: allowing\: an\:discount\: of \:6.25\%\:= 12.5\%.}}}}}
  • \underline{\boxed{\star{\sf{\blue{  \:The\: Option (D)\:or\: 12.5\%\:is\:correct\:.}}}}}

______________________♡___________________

Similar questions