Physics, asked by tipupatel, 11 months ago

Q.8
A wheel whose radius is R and moment of
inertia about its own axis is I, rotates freely
about its bwn axis. A rope is wrapped on the
wheel. A body of mass m is suspended from
the free end of the rope. The body is released
from rest. The velocity of the body after falling
a distance h would be -
mah) 1/2
(A) TU
(B) (2mgh) 1/2
(m
+I)
1/2
( 2mgh
? (m+I/r2)
om + 1)2
2mgh​

Answers

Answered by jaga030
1

Answer:

sorry I dont' know this answer

Answered by dheerajk1912
0

Velocity of body after falling a distance h    \mathbf{v=\sqrt{\frac{2mgh}{\left (m+ \frac{I}{R^{2}} \right )}}}

Explanation:

1. Given data

  Mass of object = m (kg)

  Radius of wheel = R (m)

  Mass moment of inertia =  \boldsymbol{I \ (kg.m^{2})}

  Gravitational acceleration = \boldsymbol{g \ (\frac{m}{s^{2}})}

  Vertical difference between initial and final position = h (m)

  Velocity of object at initial  position = \boldsymbol{0 \ (\frac{m}{s})}

  velocity of object at final position = \boldsymbol{v \ (\frac{m}{s})}

  Angular velocity of wheel at initial position = \boldsymbol{0  \ (\frac{rad}{s})}

  Angular velocity of wheel at final position = \boldsymbol{\omega  \ (\frac{rad}{s})}

2. Relation between linear velocity and angular velocity is

   \mathbf{\omega =\frac{v}{R}}      ...1)

3. Total initial energy of system= Energy of body + Energy of wheel

   \mathbf{E_{i}=mgh+0=mgh (J)}      ...2)

4. Total final energy of system= Energy of body + Energy of wheel

   \mathbf{E_{f}=\frac{1}{2}mv^{2}+\frac{1}{2}I\omega ^{2}}

   \mathbf{E_{f}=\frac{1}{2}mv^{2}+\frac{1}{2}I\left ( \frac{v}{R} \right ) ^{2}}

   \mathbf{E_{f}=\frac{1}{2}mv^{2}+\frac{1}{2}I\left ( \frac{v^{2}}{R^{2}} \right )}           ...3)

5. From conservation of energy

   Total final energy = Total initial energy

   \mathbf{E_{f}=E_{i}}

   \mathbf{\frac{1}{2}mv^{2}+\frac{1}{2}I\left ( \frac{v^{2}}{R^{2}} \right )=mgh}

  \mathbf{v^{2}\left (m+ \frac{I}{R^{2}} \right )=2mgh}

  \mathbf{v^{2}=\frac{2mgh}{\left (m+ \frac{I}{R^{2}} \right )}}

  So

  \mathbf{v=\sqrt{\frac{2mgh}{\left (m+ \frac{I}{R^{2}} \right )}}}    = Velocity of body after falling a distance h

Attachments:
Similar questions