Math, asked by shivamanshu191, 2 months ago

Q.8 Find the Particular integral solution
of the D.E (D2 - 4D + 3)y = 20 cos x*
O a) yp = 4 cosx - 3 sinx
O b) yp = 2 sinx - 4 cosx
Oc) yp = - 3 cosx + 4 sinx
O d) yp = 2 cosx - 4 sinx

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Differential equation is}

\mathsf{(D^2-4D+3)y=20\;cosx}

\textbf{To find:}

\textsf{The particular integral of the given D.E}

\textbf{Solution:}

\underline{\textsf{Particular integral:}}

\mathsf{=\dfrac{20\;cosx}{D^2-4D+3}}

\mathsf{=\dfrac{20\;cosx}{-1-4D+3}}\;\;\mathsf{\;\;(D^2\implies\;-1)}

\mathsf{=\dfrac{20\;cosx}{-4D+2}}

\mathsf{=\dfrac{20\;cosx}{-2(2D-1)}}

\mathsf{=\dfrac{-10\,cosx}{2D-1}}

\mathsf{=\dfrac{-10\,cosx}{2D-1}{\times}\dfrac{2D+1}{2D+1}}

\mathsf{=\dfrac{-10\,cosx(2\,D+1)}{4D^2-1}}

\mathsf{=\dfrac{-20\,D(cosx)-10\,cosx}{4(-1)-1}\;\;(D^2\implies\;-1)}

\mathsf{=\dfrac{-20\,D(cosx)-10\,cosx}{-4-1}}

\mathsf{=\dfrac{-20(-sinx)-10\,cosx}{-5}}

\mathsf{=-4\,sinx+2\,cosx}

\mathsf{=2\,cosx-4\,sinx}

\implies\boxed{\mathsf{P.I=2\,cosx-4\,sinx}}

\textbf{Answer:}

\textbf{Option (d) is correct}

Find more:

Find the Particular Integral of y" + 2y' + 3y = Sin x is

https://brainly.in/question/33821291

Answered by barani79530
0

Step-by-step explanation:

yp = 2 cosx - 4 sinx

please mark as best answer and thank

Similar questions