Math, asked by Anonymous, 9 months ago

Q.8 If x+y+ z = 8 and xy +yz+zx = 20 find the value of x3+y3+z3 -3xyz.
Q.9 If a+b+c = 9 and a2 +b2+c2 =35 find the value of a3+b3+c3 – 3abc.
Q.10 Find the value of 2.73 -1.63-1.13 using a suitable identity.
Q.11 Factorize the following by using a suitable identity:
(a) a3 +b3 – 8c3 + 6abc (b) (a/b)3 + (b/c)3 + (c/a)3 -3 (c) 8x3 -27y3 + 125 z3 + 90xyz
Q.12 Find the value of a3 + 8b3 if a + 2b = 10 and ab =15.
Q.13 Find the value of a3 -27b3 if a - 3b =( -6) and ab = (-10)
Q.14 Find the values of m and n if y2-1 is a factor of y4 + my3 +2y2 -3y +n.
Q.15 (x +2 ) is a factor of mx3 +nx2+x-6. It leaves the remainder 4 when divided by (x-2). Find m and n.PLS ANSWER ALL THE QUESTIONS.

Answers

Answered by EthicalElite
8

Answer 8:-

Given=> x+y+z=8 -(1)

xy+yz+zx=20 -(2)

From identity:-

(a+b+c)²=a²+b²+c²+2ab+2bc+2ca

=>(x+y+z)²= x²+y²+z²+2(xy+yz+zx)

=>(8)²=x²+y²+z²+2×20

=>64=x²+y²+z²+40

=>64-40=x²+y²+z²

=>24=x²+y²+z²

=>x²+y²+z²=24 -(3)

Now,

By using identinty:-

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)

=>x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-yz-zx)

=>8(24-20), using (1),(2)and(3)

=>8×4

=>32

Answer 9:-

Given:-

a + b + c = 9 -(1)

a² + b² + c² = 35 -(2)

From identity:-

(a+b+c)²=a²+b²+c²-2ab-2bc-2ca

=>(a + b + c)² - 2 (ab + bc + ca) = a²+b²+c²

=>(9)² - 2 (ab + bc + ca) = 35

=>2 (ab + bc + ca) = 81 - 35

=>2 (ab + bc + ca) = 46

=>ab + bc + ca = 23 -(3)

Now,

By using identinty:-

a³ + b³ + c³ - 3abc= (a + b + c) (a² + b² + c² - ab - bc - ca)

=> (a + b + c) {(a² + b² + c²) - (ab + bc + ca)}

=> 9 (35 - 23), using (1), (2) and (3)

=>9 × 12

=>108

Answer 10:-

2.73-1.63-1.13

(√2.73)²+(√-1.63)²+(√-1.13)²

From identity:-

(a+b+c)²=a²+b²+c²-2ab-2bc-2ca

=>(a + b + c)² - 2 (ab + bc + ca) = a²+b²+c²

=>a²+b²+c²=(a + b + c)² - 2 (ab + bc + ca)={(√2.73+(-√1.63)+(-√1.13)}²-2(√2.73×√1.63×√1.13)=-0.03

Answer 11:-

(a) Using identity:-

x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)

Which gives,

a3−b3+8c3−6abc=(a−b+2c)(a2+b2+4c2+ab+2bc−2ca)

(b) Sorry to say but I don't know the answer of this question.

(c)We know that,

a³+b³+c³-3abc = (a+b+c)(a²+b²+c²−ab−bc−ca)

So here,

125x³+27y³+8z³−90xyz

=(5x)³+(3y)³+(2z)³+3×5x×3y×2z)= (5x+3y+2z)(25x²+9y²+4z²-15xy−6yz−10zx)

Answer 12:-

(a+2b)³=1000

By using identinty:-

(a+b)³=a³+b³+3ab(a+b)

=>a³+8b³+6ab(a+2b)=1000

=>a³+8b³+6×15×10=1000

=>a³+8b³=1000-900

=>a³+8b³=100

Answer 13:-

a3 - 27b3=?

a-3b=-6

ab=-10

using identinty:-

(a-b)³=a³-b³-3ab(a-b)

         

(a-3b)³=(a)³-(3b)³-3ab(a-3b)

(-6)³ =(a)³ - (3b)³ - 3(-10)(-6)    

a³-27b³ = -216+180

a³-27b³ = -36

          

Answer 14:-

first factorize y² - 1

= ( y²) - ( 1²)

Using identity:-

a²- b² = (a+b) (a-b) = (y+1) (y-1)

now we have the factors, if we say that a term is completely divisible by say, x then it is completely divisible also by the factors of x.

Now, p(y) = y⁴+m(y³)+2y²-3y+n

p(1)= 1⁴+m(1³)+2÷1²-3×1+n

0= 1+m+2-3+n

0=m+n -(1)

Now, p(y)=y⁴+m(y³)+2y²-3y+n

p(-1)=(-1)⁴+m(-1³)+2×-1²-3×-1+n

0 = 1-m+2-3+n

0=n-m -(2)

adding (1) & (2)

n-m=0

n+m=0

n=0 and m=0

Answer 15:-

mx³+nx²+x-6 has (x+2) as a factor and it leaves a remained of 4 divide by x-2.

3(11+3m+n)=3 -(1)

11+3m+n=1

3m+n=-10 -(2)

On substracting (1) and (2), we get:-

m=3, m=-3

Put this value of m in any (1)or (2), to get n=-1. So we get n=-1 as the answer by dividing with 4.

Hope it helps you,

Please mark me as brainlist.

Similar questions