Math, asked by vermatanisha623, 2 months ago

Q.8 Point A(1,2,3), B(4,k.4) and C(-2,4,2) are collinear then find the value of k.

fa A(1,2,3), B(4,k.4)3tR C (-2,4,2)?​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Points A(1,2,3), B(4,k,4),C(-2,4,2) are collinear}

\textbf{To find:}

\textsf{The value of k}

\textbf{Solution:}

\textsf{The equation of the line joining A(1,2,3) and B(4,k,4) is}

\mathsf{\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}}

\implies\mathsf{\dfrac{x-1}{4-1}=\dfrac{y-2}{k-2}=\dfrac{z-3}{4-3}}

\implies\mathsf{\dfrac{x-1}{3}=\dfrac{y-2}{k-2}=\dfrac{z-3}{1}}

\textsf{Since A,B,C are collinear, C lies on}

\textsf{the line joining A and B}

\implies\mathsf{\dfrac{-2-1}{3}=\dfrac{4-2}{k-2}=\dfrac{2-3}{1}}

\implies\mathsf{\dfrac{-3}{3}=\dfrac{2}{k-2}=\dfrac{-1}{1}}

\implies\mathsf{-1=\dfrac{2}{k-2}=-1}

\implies\mathsf{\dfrac{2}{k-2}=-1}

\implies\mathsf{2=-(k-2)}

\implies\mathsf{2=-k+2}

\implies\boxed{\mathsf{k=0}}

\textbf{Find more:}

If the points (x y -3) (2 0 -1) and (4 2 3) lie on a straight line then what are the values of x and y respectively?​

https://brainly.in/question/16830546

Similar questions