Q.9 Factorise
27y³ + 125z³
Answers
Answered by
0
Answer:
(i) 27y³ + 125z³
We know that,
x³ + y³ = (x+y) ( x² - xy + y² )
So, here
x = 3y , y = 5z
= 27y³ + 125z³ = (3y + 5z) { (3y)² - 3y*5x + (5z)² }
= 27y³ + 125z³ = (3y + 5z) { 9y² - 15xy + 25z² }
➖➖➖➖➖➖➖➖➖➖➖
(ii) 64m³ - 343n³
We know that,
x³ - y³ = (x-y) ( x² - xy + y² )
So, here
x = 4m , y = 7n
= 64m³ - 343n³ = (4m - 7n) { (4m)² + 4m*7n + (7n)² }
= 64m³ - 343n³ = (4m - 7n) { 16m² + 28mn + 49n² }
Answered by
1
Answer :
- (3y + 5z) (9y + 25z² - 15yz)
Given :
- 27xy³ + 125z³
Solution :
As we know that ,
- a³ + b³ = (a + b) (a² - ab + b²)
where a = 3y and b = 5z
⇢ (3y + 5z) [ (3y)² + (5z)² - (3y) (5z)]
⇢ (3y + 5z) (9y + 25z² - 15yz)
Hence, 27xy³ + 125z³ = (3y + 5z) (9y + 25z² - 15yz)
More Explanation :
- a² + b² = (a + b) (a - b)
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a³ + b³ = (a + b) (a² - ab + b²)
- a³ - b³ = (a -b) (a² + ab + b²)
Similar questions