Q:-9) Find the particular solution
of the differential equation
Cos3 ydx + xCosydy - Sinydy, given
that x=1, y=0
Answers
Answered by
1
Answer:
Hamen Nahin Aata Khud kar le bhai
Answered by
0
Answer:
cosydy+cosxsinydx=0
⇒+cotydy=−cosxdx
Now integrating, we get
lnsiny=−sinx+C
⇒lnsiny+sinx=C
Put x=
2
z
and y=
2
z
, we get
lnsin
2
z
+sin
2
z
=C
ln(1)+1=C
C=1
Equation is
lnsiny+sinx=1
Similar questions