Math, asked by durgaakumari, 3 months ago

q 9. Find the value
of x and y (matrix) if
[1 1 / 4 5][x y] = [2 / 7]

Attachments:

Answers

Answered by sneharoy8622
1

Answer:

x=3, y= -1

HOPE IT HELPS YOU

Attachments:
Answered by mathdude500
2

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \: \: \begin{bmatrix} 1 &  1\\ 4 & 5\end{bmatrix} \begin{bmatrix} \: x \\ y \end{bmatrix} = \begin{bmatrix} \: 2 \\ 7\end{bmatrix}

\large\underline{\sf{To\:Find - }}

 \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \bull \:  \:  \sf \: values \: of \: x \: and \: y

\large\underline{\sf{Solution-}}

↝ Given that

\rm :\longmapsto\:\begin{bmatrix} 1 &  1\\ 4 & 5\end{bmatrix}\begin{bmatrix} \: x \\ y \end{bmatrix} = \begin{bmatrix} \: 2 \\ 7 \end{bmatrix}

\rm :\longmapsto\:\begin{bmatrix} \: x \times 1 + y \times 1 \\ 4 \times x + 5 \times y \end{bmatrix} = \begin{bmatrix} \: 2 \\ 7 \end{bmatrix}

\rm :\longmapsto\:\begin{bmatrix} \: x + y \\ 4x + 5y \end{bmatrix} = \begin{bmatrix} \: 2 \\ 7 \end{bmatrix}

↝ On Comparing, we get

\rm :\longmapsto\:x + y = 2 -  -  - (1)

and

\rm :\longmapsto\:4x + 5y = 7 -  -  - (2)

↝ Multiply equation (1) by 5, we get

\rm :\longmapsto\:5x + 5y = 10 -  -  - (3)

↝ On Subtracting equation (2) from equation (3), we get

\rm :\longmapsto\:5x + 5y - 4x - 5y = 10 - 7

\bf\implies \:x \:  =  \: 3 -  -  - (4)

↝ On substituting 'x = 3', in equation (1), we get

\rm :\longmapsto\:3 + y = 2

\bf\implies \:y \:  =  \:  -  \: 1

\overbrace{ \underline { \boxed { \rm \therefore \: The \: value \: of \: \:  \:  \boxed{ \bf \: x = 3} \:  \:  \: and \:  \:  \:  \boxed{ \bf \: y =  - 1} }}}

Additional Information :-

Properties of Matrix Multiplication

  • 1. Associative Property : A(BC) = (AB)C

  • Distributive Property : A(B + C) = AB + AC

  • Distributive Property : (A + B)C = AC + BC

  • There exist Identity Matrix I such that AI = IA = A is called Multiplicative Identity.

Similar questions