[Q 9] Let A, B and C be sets. Then without putting/ considering any numeral values for A, B, C
show that A U (B n C) = (A U B) N (AUC).
(Understanding)
Answers
Answered by
2
Step-by-step explanation:
To prove
A∪(B∩C) = (A∩B)∪(A∩C)
Concept
If X and Y are two sets, then
X⊂Y and Y⊂X ⇔ X = Y
Hence, to prove the given equality it is sufficient to prove that LH S and RHS are subset of each other.
Proof
Let x ∈ A∪(B∩C)
⇒ x ∈ A or x ∈ (B∩C)
⇒ x ∈ A or ( x ∈ B and x ∈ C )
⇒ ( x ∈ A or x ∈ B ) and ( x ∈ A or x ∈ C )
⇒ x ∈ (A∪B) and x ∈ (A∪C)
⇒ x ∈ (A∪B) ∩ (A∪C)
i.e if x ∈ A∪(B∩C), then x ∈ (A∪B) ∩ (A∪C)
So A∪(B∩C) ⊂ (A∪B) ∩ (A∪C) ..........(1)
Let y ∈ (A∪B) ∩ (A∪C)
⇒ y ∈ (A∪B) and x ∈ (A∪C)
⇒ ( y ∈ A or y ∈ B ) and ( y ∈ A or y ∈ C )
⇒ y ∈ A or ( y ∈ B and y ∈ C )
⇒ y ∈ A or y ∈ (B∩C)
⇒ y ∈ A∪(B∩C)
i.e. if y ∈ (A∪B) ∩ (A∪C), then y ∈ A∪(B∩C)
So (A∪B) ∩ (A∪C) ⊂ A∪(B∩C)........(2)
From (1) and (2),
A∪(B∩C) = (A∪B) ∩ (A∪C)
Hence Proved.
Similar questions