Math, asked by Anonymous, 10 months ago

Q. 999) If the 3rd and the 9th terms of an A.P. are 4 and − 8 respectively, then which term of this A.P is zero.​

Answers

Answered by ThakurRajSingh24
15

{\underline{\boxed{\red{\sf{Given \: that :}}}}}

\longrightarrow{\tt{3rd \:term,\: a_3 \:= \:4}}

\longrightarrow{\tt{and\: 9th\: term,\: a_9\: =\: -8}}

{\underline{\boxed{\green{\sf{Solution :}}}}}

We know that, the nth term of AP is;

\longrightarrow{\tt{a_n = a + (n -1) d}}

Therefore,

\longrightarrow{\tt{a_3 = a + (3 - 1) d}}

\longrightarrow{\red{\tt{4 = a + 2d ………… (i)}}}

\longrightarrow{\tt{a_9 = a + (9 -1) d}}

\longrightarrow{\tt{\green{-8 = a + 8d …………… (ii)}}}

On subtracting equation (i) from (ii), we will get here,

\longrightarrow {\tt{-12 = 6d}}

\longrightarrow{\boxed{\red{\tt{d = -2}}}}

From equation (i), we can write,

\longrightarrow4 = a + 2 (−2)

\longrightarrow4 = a − 4

\longrightarrow {\boxed{\red{\tt{a = 8}}}}

Let nth term of this A.P. be zero.

\longrightarrow {\boxed{\purple{\tt{a_n = a + (n -1) d}}}}

\longrightarrow0 = 8 + (n − 1) (−2)

\longrightarrow0 = 8 − 2n + 2

\longrightarrow2n = 10

\longrightarrow {\boxed{\blue{\tt{n = 5}}}}

{\large{\underline{\red{\tt{Hence, \:5th\: term \:of \:this\: A.P. \:is \:0 .}}}}}

Similar questions