Physics, asked by Anonymous, 1 month ago

Q]. A body weighing 0.5 kg tied to a string is projected with a velocity of 10 m/s. Thebody starts whirling in a vertical circle. If the radius of the circle is 0.8 m, find the tension in the string when the body is at the top of the circle​

Answers

Answered by Ridvisha
60

{ \underline{ \underline{ \huge{ \rm{ \green{QUESTION}}}}}}

A body weighing 0.5 kg tied to a string is projected with a velocity of 10 m/s. The body starts whirling in a vertical circle . lf the radius of the circle is 0.8 m, find the tension in the string when the body is at the top of the circle ?

{ \underline{ \underline{ \huge{ \rm { \green{SOLUTION}}}}}}

{ \dag{ \underline{ \underline{ \purple{ \tt{   \:  \: \: given}}}}}} \\ { \dashrightarrow{ \blue{ \sf{ \: mass \: (m) = 0.5 \: kg}}}} \\ { \dashrightarrow{ \blue{ \sf{ \: initial \: velocity \: (Vo) = 10 \: m \:  {sec}^{ - 1} }}}} \\ { \dashrightarrow{ \blue{ \sf{ \: length \: of \: string \: ( \: l \: ) = 0.8 \: m}}}}

{ \dag{ \underline{ \underline{ \sf{ \purple{ \: \:  \:  to \: find}}}}}} \\  \\{ \sf{ tension \: in \: the \: string }} \\{ \sf { when \: the \: body \: is \: at \: the \: top \: of \: vertical \: circle}}

{ \dag{ \underline{ \underline{ \purple{ \sf{ \:  \: formula \: used}}}}}} \\  \\{ \sf{ tension \: in \: the \: string \:when \: the \: body}} \\{ \sf{is \: at \: the \: top \: of \: vertical \: circle}} \\  \\ { \boxed{ \boxed{ \sf{ \green{T \:  = m( \frac{ {Vo}^{2} }{l}  - 5g)}}}}}

{ : { \implies{ \blue{ \sf{ \: T \:  = 0.5 \: ( \frac{ {(10)}^{2} }{0.8}  - 5(10))} \:N \:  }}}}

{ : { \implies{ \blue{ \sf{T = 0.5( \frac{1000}{8}  - 50)} \: N \: }}}}

{ : { \implies{ \blue{ \sf{ \: T = 0.5( \frac{1000 - 400}{8})}  \: N \: }}}}

{ : { \implies{ \blue{ \sf{ \: T =  \frac{0.5 \times 600}{8} \: N \:  \: }}}}}

{ \boxed{ \boxed{ \red{ \sf{T = 37.5 \:N \:  }}}}}

{ \underline{ \underline{ \huge{ \rm{ \green{CONCEPT}}}}}}

refer to the attached images

Attachments:

Anonymous: ~Sweet~❤️
Answered by Sayantana
6

Answer:

Concept:

▪︎during vertical circular motion of the object kinetic energy gets changed to potential and vice versa.

▪︎ Existing force,Tension will provide the centripetal force.

--------

》observing the object by its frame of reference,

it will experience the psuedo-force,centrifugal towards outside.

Solution:

let,

Tension at top= \ T_{t},Tension at bottom= \ T_{b}

Velocity at top=\ v_{t},Velocity at bottom=\ v_{t}

¤Energy conservation:

\green{\bf{ KE_{i} +PE_{i} = KE_{f} +PE_{f}}}

\rightarrow{\sf{ \dfrac{1}{2}m(v_{b})^{2} + mgh=\dfrac{1}{2}m(v_{t})^{2} +mgh'}}

\rightarrow{\sf{ \dfrac{1}{2}m(v_{b})^{2} + mg(0)=\dfrac{1}{2}m(v_{t})^{2} +mg(2l)}}

\rightarrow{\sf{ \dfrac{1}{2}m(10)^{2} +0 =\dfrac{1}{2}m(v_{t})^{2} +mg(2l)}}

\rightarrow{\sf{ \dfrac{1}{2}(100)=\dfrac{1}{2}(v_{t})^{2} +g(2l)}}

\rightarrow{\sf{ 50=\dfrac{1}{2}(v_{t})^{2} +16}}

\implies{\bf{(v_{t})^{2}=68}}

¤Centrifugal force :

》Tension at top:

\bf{ T_{t}} +mg = \bf{m \dfrac{(v_{t})^{2}}{r}}

\bf{ T_{t}} = \bf{m \dfrac{(v_{t})^{2}}{r}} - mg

\rightarrow{\sf{T_{t} =(0.5×68/0.8) - (0.5×10)}}

\rightarrow{\bf{ T_{t} = 42.5 - 5}}

\rightarrow{\bf{ T_{t} = 37.5}}

-----

so tension at top = 37.5N

------×××××-----×××××-----

hope it helps!

Attachments:

Anonymous: Greattttt ! :0
Similar questions