Math, asked by ansumanswain6415, 4 months ago


Q. A can do a piece of in 20 days b it in 15 days. They work together on it for 6 days and then a left. How long will take tofinish the remaining work ?

Answers

Answered by Anonymous
62

Given:

  • A can do a piece of in 20 days
  • B can do it in 15 days
  • They work together for 6 days and then A left

To Find:

  • How long will B take to finish the remaining work ?

Solution:

let's start:

  : \longrightarrow \tt \: let \: a's \: 1 \: days \: work =  \frac{1}{20}  \\  \\ : \longrightarrow \tt \: let \: b's \: 1 \: days \: work = \frac{1}{15}

Now, the work done by a and b in one day :

 \longmapsto \frac{1}{20}  +  \frac{1}{15}  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \longmapsto \frac{1 \times 3}{20 \times 3}  +  \frac{15 \times 4}{20  \times  4}  \\  \\  \\ \longmapsto \frac{3}{60}  +  \frac{4}{60}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \longmapsto \frac{3 + 4}{60}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \longmapsto \frac{7}{60}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:

★Now the work done by and and b for 6 days★

\longmapsto \: 6 \times  \frac{7}{60} \:  \:  \:  \:  \:   \\  \\  \\ \longmapsto \cancel{ 6 }^{1} \times  \frac{7} {\cancel{60}^{10}  } \\  \\  \\ \longmapsto \frac{7}{10}  \bigstar  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now the remaining work

{: \implies}\sf  \frac{1}{1}  - \frac{7}{10}   \:  \: \\  \\  \\  \\ {: \implies}\sf  \frac{10}{10}  -  \frac{7}{10}  \\  \\  \\  \\ {: \implies}\sf  \frac{3}{10}  \star \:  \:  \:  \:  \:  \:  \:

as b can do a work in 15days the work done by b in 3/10 days:

 \leadsto15 \times  \frac{3}{10}  \\  \\ \leadsto  \cancel\frac{45}{10}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \leadsto \sf 4.5days

\blue{ \underline{ \boxed{ \pink{ \mathfrak{ \therefore \: b \: takes \: 4.5 \: days \: to \: do \: the \: work} \:  \bigstar}}}}

Attachments:
Answered by Anonymous
35

Given that, A can do a piece of work in 20 days b can do the same work in 15 days.

_____________________

To Find:

⊱They work together on it for 6 days and then a left.

  • How long will take b to finish the remaining work ?

Solution:

Now,

 \rm \:  \leadsto \: the \: work \: done \: by \: A\: per \: day =  \frac{1}{20}  \\  \\  \\ \rm  \leadsto \: the \: work \: done \: by \: B\: per \: day =  \frac{1}{15}

as given a and b worked together

 { : \longrightarrow} \tt  \: their \: work \: done \: togeather \: per \: day \:  = \frac{1}{20}   +  \frac{1}{15}  \\  \\  \\ \\ { : \longrightarrow} \tt  \: their \: work \: done \: togeather \: per \: day \:   =  \frac{3 + 4}{60}  \:  \:  \:  \:  \\  \\  \\  \\ { : \longrightarrow} \tt  \: their \: work \: done \: togeather \: per \: day \:   =  \frac{7}{60}  \:  \:  \:  \:  \:  \:  \:  \:  \:

A and B worked together for 6 days so the work done:

 \longmapsto \:  \frac{7}{60}    \times 6 \:  \:  \\  \\  \\  \longmapsto \frac{7}{10} \:  \:  \:  \:  \:  \:  \:  \:  \:

so, the work left equals.

 \leadsto \frac{1}{1}  -  \frac{7}{10}  \\  \\  \\ \leadsto  \frac{3}{10} \:  \:  \:  \:  \:  \:  \:

B has the capacity to do the whole work in 15 days so 3/10th of the work can be done in

 \frac{3}{10}  \times 15  \: \\  \\ \tt4.5days

 {\therefore  }\rm{\underline{ \: b \: can \: do \: the \: leftover \: work \: in \: 4.5 \: days}}

__________________________________________

↬scroll from left to right if difficulty in viewing the full answer.!

happy learning! :)

Similar questions