Physics, asked by Anonymous, 2 months ago

Q] A string of length (L) fixed at one end carries a mass m at the other. The string makes 2/π revolutions/sec around the vertical axis through the fixed end. The tension in the
string is ....​

Answers

Answered by diajain01
28

{\boxed{\underline{\tt{\orange{Required  \:  \: answer \:  \:  is  \:  \: as  \:  \: follows:-}}}}}

❀ 16ml

━━━━━━━━━━━━━━━━━━━━━━

By the diagram, It is given that

 \leadsto \:  \displaystyle \sf{T sin\theta =  \frac{m {v}^{2} }{r}-----(1)}

\leadsto\displaystyle\sf{T cos\theta=mg-----(2)}

Where linear velocity

\leadsto\displaystyle\sf{v = r\omega}

and,

\leadsto\displaystyle\sf{sin\theta =  \frac{r}{l} }

Put these values in Eq (1), we get,

 : \longrightarrow\displaystyle\sf{T × \frac{r}{l}   = m { \omega}^{2} r}

:\longrightarrow\displaystyle\sf{T  = m { \omega}^{2} l }

We know that ω = 2πn, we have

\therefore\displaystyle\sf{T = m(2\pi n)^2l}

:\longrightarrow\displaystyle\sf{T = m {(2 \pi \times  \frac{2}{ \pi}) }^{2}l }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\boxed{\underline{\purple{ \huge{\rm{T = 16ml}}}}}}

Attachments:
Answered by Ridvisha
52

{ \underline{ \underline{ \huge{ \tt{ \purple{SOLUTION}}}}}}

{ \leadsto{ \green{ \sf{angular \: frequency \: (f) =  (\frac{2}{\pi}) rev \:  {sec}^{ - 1}}} }}

{ \boxed{ \boxed{ \red { \sf{angular \: velocity \: (w) = 2\pi \times f}}}}}

{ \implies{ \blue{ \sf{ \: w = 2 \times \pi \times  \frac{2}{\pi}} \: rad \:  {sec}^{ - 1} }}}

{ \implies{ \sf{ \blue{ \: w = 4 \: rad \:  {sec}^{ - 1}}}}}

{ \rightarrow{ \sf{ \:  \: from \: the \: given \: figure}}} \\  \\  \:  \:  \:  \:  \: { \green{ \tt{ \:  \: r = l \sin(</p><p>θ) }}}

{ \rightarrow{ \tt{ \green { \: T \sin(θ )= \: m  \: {w}^{2} r}}}}

{ \rightarrow{ \tt{ \green{ \: </p><p>T \sin(θ) = m \:  {</p><p>w}^{2} l \sin(θ) }}}}

{ \rightarrow{ \tt{ \green{ \: </p><p>T \:  =  \: m {(4)}^{2} \: l}}}}

{ \rightarrow{ \boxed{ \boxed{ \tt{ \red{ \: T \:  =  \: 16 \: m \: l}}}}}}

Attachments:
Similar questions