Math, asked by Harshita220088, 15 days ago

Q) A swimming pool is 41 meter long and covers an area of 1066 sq. meter. What is the breadth of the swimming pool?​

Answers

Answered by BrainlyGovind
3

Given that,

l=20m

b=15m

d=4m (d-h)

We know that,

Area for coner its floor2d(l+b)+lb

=2(4)(20+15)+(20×15)

=8×35+300

=280+300

=580m

2

Rate of coner its floor Rs.12/m

2

∴ Total cost of coner its floor =580×12

Rs.6960

Then,

We get Rs.6960

hope it helps you

Answered by Anonymous
57

Answer:

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{\purple{Given :}}}}}}}\end{gathered}

  • \leadsto Lenght of swimming pool = 41 meter
  • \leadsto Area of swimming pool = 1066 sq. meter.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{\purple{To Find :}}}}}}}\end{gathered}

  • \leadsto Breadth of swimming pool

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{\purple{Using Formula :}}}}}}}\end{gathered}

\dag{\underline{\boxed{\sf{Area  \: of  \: Rectangle = Length  \times Breadth}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{\purple{Solution :}}}}}}}\end{gathered}

  • Let the breadth of swimming pool be x m.

According to the question

{: \longmapsto{\sf{Area  \: of  \: Rectangle = Length  \times Breadth}}}

{: \longmapsto{\sf{1066= 41\times x}}}

{: \longmapsto{\sf{1066= 41x}}}

{: \longmapsto{\sf{\dfrac{1066}{41} = x}}}

{: \longmapsto{\sf{\cancel{\dfrac{1066}{41}} = x}}}

{: \longmapsto{\sf{26= x}}}

\bigstar{\underline{\boxed{\sf{Breadth = 26 m}}}}

{\therefore{\underline{\underline{\sf{\red{The \:  breadth \:  of  \: swimming \:  pool  \: is \:  26 \:  m.}}}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{\purple{Verification :}}}}}}}\end{gathered}

Checking our answer

{: \longmapsto{\sf{Area  \: of  \: Rectangle = Length  \times Breadth}}}

  • Substituting the values

{: \longmapsto{\sf{1066 \: {cm}^{2} = 41 \times 26} \: {{cm}^{2}}}}

{: \longmapsto{\sf{1066 \: {cm}^{2} = 1066 \: {cm}^{2}}}}

\bigstar{\underline{\boxed{\sf{LHS=RHS}}}}

{\therefore{\underline{\underline{\sf{\red{Hence  \: Verified. {\checkmark}}}}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{\purple{Diagram :}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} {\begin{gathered} \sf{26 \:m}\huge\boxed{ \begin{array}{cc} \: \: \: \: \: \: \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \  \:  \:  \end{array}} \\ \: \: \: \: \: \sf{41 \: m}\end{gathered}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

  • Diagram of Swimming pool

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 41 m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 26 m}\put(-0.5,-0.4){\bf }\put(-0.5,3.2){\bf }\put(5.3,-0.4){\bf }\put(5.3,3.2){\bf }\end{picture}

  • See this diagram from website Brainly.in.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{\purple{Learn More:}}}}}}}\end{gathered}

\dag{\underline{\underline{\sf{\red{Properties\: of \: rectangle..}}}}}

  • \dashrightarrow Opposite sides of rectangle are parallel and equal to each other
  • \dashrightarrow Each interior angle of rectangle is 90°
  • \dashrightarrow The diagonals of rectangle bisect each other
  • \dashrightarrow Both the diagonals of rectangle have the same length
Attachments:
Similar questions