q as a percentage of p is equal to p as a percentage of (p + q). find q as a percentage of p. *
Answers
Given, Q as a percentage of p is equal to p as a percentage of (p + q)
i.e., (q/p) * 100 = (p/(p+q))*100 or q/p = p/(p+q)---I
as q is some percentage of P, lets take q = kp ----II
putting II in I we get,
kp/p = p/(p+kp) or k = 1 / (1+k) ----III
Solving the quadratic eqn, k^2 + k-1 =0
we get k = -1 + √5 or k= -1 - √5
k=1.24/2 or -3.24/2-----IV
ignore the -ve value. Applying I in q as % of p = q/p *100 = kp/p * 100 = k*100
Thus from Iv, q as % of p=(1.24 / 2) * 100 = 62%
Answer:
q as % of p = () × 100 = 62%
Step-by-step explanation:
Given, Q as a percentage of p is equal to p as a percentage of (p + q)
that is, × 100 = () × 100 or = ----------------------(1)
as q is some percentage of P, lets take q = k p -----------(2)
putting (2) in (1) we get,
= or k = ----------------(3)
Solving the quadratic equation, k² + k - 1 =0
we get k = -1 + √5 or k= -1 - √5
k = or -----------------------(4)
ignore the -ve value.
Applying 1 in q as % of p = × 100 = × 100 = k × 100
Thus from (4),
q as % of p = () × 100 = 62% .