Math, asked by hell305k, 2 months ago


Q-Declare a matrix
1 2 3
0 4 5
0 0 3
Find eigen values and eigen vector.​

Answers

Answered by shadowsabers03
51

We have the matrix,

\longrightarrow A=\left[\begin{array}{ccc}1&2&3\\0&4&5\\0&0&3\end{array}\right]

We need to find its eigenvalues and eigenvectors.

____________________________________

Eigenvalues of a square matrix A of order n are the possible values of a complex number \lambda, such that the determinant of the matrix A-\lambda I equals zero, i.e., |A-\lambda I|=0, where I is the identity matrix of order n.

Eigenvector of a square matrix A of order n, for a particular eigenvalue \lambda, is any non - zero complex multiple of an n × 1 matrix X such that (A-\lambda I)X=O, where O is a zero matrix of order n × 1.

[Note:- Never misinterpret 'complex number' as only numbers with non - zero imaginary part, as complex numbers include every real numbers also.]

____________________________________

The matrix A-\lambda I is simply the matrix A but \lambda is subtracted from each element of main diagonal, i.e.,

\longrightarrow A-\lambda I=\left[\begin{array}{ccc}1-\lambda&2&3\\0&4-\lambda&5\\0&0&3-\lambda\end{array}\right]

Now,

\longrightarrow|A-\lambda I|=0,

\longrightarrow\left|\begin{array}{ccc}1-\lambda&2&3\\0&4-\lambda&5\\0&0&3-\lambda\end{array}\right|=0

Expanding along C_1,

\longrightarrow(1-\lambda)\big((4-\lambda)(3-\lambda)-5\cdot0\big)=0

\longrightarrow(1-\lambda)(4-\lambda)(3-\lambda)=0

From this we get,

\longrightarrow\underline{\underline{\lambda\in\left\{1,\ 3,\ 4\right\}}}

These are the eigenvalues.

Let the eigenvector, the 3×1 matrix X, be,

\longrightarrow X=\left[\begin{array}{c}a\\b\\c\end{array}\right]

Take \lambda=1. Then,

\longrightarrow A-\lambda I=\left[\begin{array}{ccc}0&2&3\\0&3&5\\0&0&2\end{array}\right]

Now,

\longrightarrow(A-\lambda I)X=O

\longrightarrow\left[\begin{array}{ccc}0&2&3\\0&3&5\\0&0&2\end{array}\right]\cdot\left[\begin{array}{c}a\\b\\c\end{array}\right]=0

\longrightarrow\left[\begin{array}{c}2b+3c\\3b+5c\\2c\end{array}\right]=0

Then we get,

  • 2b+3c=0
  • 3b+5c=0
  • 2c=0

Solving them we get,

  • b=0
  • c=0

a is free variable here. Take a=1.

Hence,

\longrightarrow\underline{\underline{X=k\left[\begin{array}{c}1\\0\\0\end{array}\right],\quad k\in\mathbb{C}-\{0\}}}

This is the corresponding eigenvector for \lambda=1.

Take \lambda=3. Then,

\longrightarrow A-\lambda I=\left[\begin{array}{ccc}-2&2&3\\0&1&5\\0&0&0\end{array}\right]

Now,

\longrightarrow(A-\lambda I)X=O

\longrightarrow\left[\begin{array}{ccc}-2&2&3\\0&1&5\\0&0&0\end{array}\right]\cdot\left[\begin{array}{c}a\\b\\c\end{array}\right]=0

\longrightarrow\left[\begin{array}{c}-2a+2b+3c\\b+5c\\0\end{array}\right]=0

Then we get,

  • -2a+2b+3c=0
  • b+5c=0

Solving them we get,

  • b:c=-5:1
  • a:c=7:-2

Combining both we get,

  • a:b:c=7:10:-2

Hence,

\longrightarrow\underline{\underline{X=k\left[\begin{array}{c}7\\10\\-2\end{array}\right],\quad k\in\mathbb{C}-\{0\}}}

This is the corresponding eigenvector for \lambda=3.

Take \lambda=4. Then,

\longrightarrow A-\lambda I=\left[\begin{array}{ccc}-3&2&3\\0&0&5\\0&0&-1\end{array}\right]

Now,

\longrightarrow(A-\lambda I)X=O

\longrightarrow\left[\begin{array}{ccc}-3&2&3\\0&0&5\\0&0&-1\end{array}\right]\cdot\left[\begin{array}{c}a\\b\\c\end{array}\right]=0

\longrightarrow\left[\begin{array}{c}-3a+2b+3c\\5c\\-c\end{array}\right]=0

Then we get,

  • -3a+2b+3c=0
  • 5c=0
  • -c=0

Solving them we get,

  • c=0
  • a:b=2:3

Hence,

\longrightarrow\underline{\underline{X=k\left[\begin{array}{c}2\\3\\0\end{array}\right],\quad k\in\mathbb{C}-\{0\}}}

This is the corresponding eigenvector for \lambda=4.

Answered by Anonymous
4

\huge{\underline{\underline{\mathrm{\red{AnswEr}}}}}

We have the matrix,

\longrightarrow A=\left[\begin{array}{ccc}1&2&3\\0&4&5\\0&0&3\end{array}\right]

We need to find its eigenvalues and eigenvectors.

____________________________________

Eigenvalues of a square matrix A of order n are the possible values of a complex number \lambda, such that the determinant of the matrix A-\lambda I equals zero, i.e., |A-\lambda I|=0, where I is the identity matrix of order n.

Eigenvector of a square matrix A of order n, for a particular eigenvalue \lambda, is any non - zero complex multiple of an n × 1 matrix X such that (A-\lambda I)X=O, where O is a zero matrix of order n × 1.

[Note:- Never misinterpret 'complex number' as only numbers with non - zero imaginary part, as complex numbers include every real numbers also.]

____________________________________

The matrix A-\lambda I is simply the matrix A but \lambda is subtracted from each element of main diagonal, i.e.,

\longrightarrow A-\lambda I=\left[\begin{array}{ccc}1-\lambda&2&3\\0&4-\lambda&5\\0&0&3-\lambda\end{array}\right]

Now,

\longrightarrow|A-\lambda I|=0,

\longrightarrow\left|\begin{array}{ccc}1-\lambda&2&3\\0&4-\lambda&5\\0&0&3-\lambda\end{array}\right|=0

Expanding along C_1,

\longrightarrow(1-\lambda)\big((4-\lambda)(3-\lambda)-5\cdot0\big)=0

\longrightarrow(1-\lambda)(4-\lambda)(3-\lambda)=0

From this we get,

\longrightarrow\underline{\underline{\lambda\in\left\{1,\ 3,\ 4\right\}}}

These are the eigenvalues.

Let the eigenvector, the 3×1 matrix X, be,

\longrightarrow X=\left[\begin{array}{c}a\\b\\c\end{array}\right]

Take \lambda=1. Then,

\longrightarrow A-\lambda I=\left[\begin{array}{ccc}0&2&3\\0&3&5\\0&0&2\end{array}\right]

Now,

\longrightarrow(A-\lambda I)X=O

\longrightarrow\left[\begin{array}{ccc}0&2&3\\0&3&5\\0&0&2\end{array}\right]\cdot\left[\begin{array}{c}a\\b\\c\end{array}\right]=0

\longrightarrow\left[\begin{array}{c}2b+3c\\3b+5c\\2c\end{array}\right]=0

Then we get,

2b+3c=0

3b+5c=0

2c=0

Solving them we get,

b=0

c=0

a is free variable here. Take a=1.

Hence,

\longrightarrow\underline{\underline{X=k\left[\begin{array}{c}1\\0\\0\end{array}\right],\quad k\in\mathbb{C}-\{0\}}}

This is the corresponding eigenvector for \lambda=1.

Take \lambda=3. Then,

\longrightarrow A-\lambda I=\left[\begin{array}{ccc}-2&2&3\\0&1&5\\0&0&0\end{array}\right]

Now,

\longrightarrow(A-\lambda I)X=O

\longrightarrow\left[\begin{array}{ccc}-2&2&3\\0&1&5\\0&0&0\end{array}\right]\cdot\left[\begin{array}{c}a\\b\\c\end{array}\right]=0

\longrightarrow\left[\begin{array}{c}-2a+2b+3c\\b+5c\\0\end{array}\right]=0

Then we get,

-2a+2b+3c=0

b+5c=0

Solving them we get,

b:c=-5:1

a:c=7:-2

Combining both we get,

a:b:c=7:10:-2

Hence,

\longrightarrow\underline{\underline{X=k\left[\begin{array}{c}7\\10\\-2\end{array}\right],\quad k\in\mathbb{C}-\{0\}}}

This is the corresponding eigenvector for \lambda=3.

Take \lambda=4. Then,

\longrightarrow A-\lambda I=\left[\begin{array}{ccc}-3&2&3\\0&0&5\\0&0&-1\end{array}\right]

Now,

\longrightarrow(A-\lambda I)X=O

\longrightarrow\left[\begin{array}{ccc}-3&2&3\\0&0&5\\0&0&-1\end{array}\right]\cdot\left[\begin{array}{c}a\\b\\c\end{array}\right]=0

\longrightarrow\left[\begin{array}{c}-3a+2b+3c\\5c\\-c\end{array}\right]=0

Then we get,

-3a+2b+3c=0

5c=0

-c=0

Solving them we get,

c=0

a:b=2:3

Hence,

\longrightarrow\underline{\underline{X=k\left[\begin{array}{c}2\\3\\0\end{array}\right],\quad k\in\mathbb{C}-\{0\}}}

This is the corresponding eigenvector for \lambda=4.

Similar questions