Q] Derive an expression for the difference in tensions at highest and lowest point for a
particle performing vertical circular motion
Answers
Answered by
256
✠ Question Given :
- Derive an expression for the difference in tensions at highest and lowest point for a particle performing vertical circular motion.
✠ Required Solution :
• At Diagram :
- ⇒ T - mgCosθ = mv²/ R ( centrifugal force)
- ⇒ T = mv²/ R - mgCosθ
✯ At Highest Point :
• ( θ = 180° , Cos180° = -1 )
- ⇒ T min = mv²/R - mg
• For string not to be sla.ck
- ⇒ T min > 0 ( looping to loop)
- ⇒ mv²/R - mg > 0
- ⇒ V = √ rg
✯ At Lowest Point :
- ⇒ ( Cos180°= +1 , θ = 0 )
- ⇒ Tmax = mv²/R + mg ____ (eq1)
• Apply conservation of energy
- ⇒ 1/2 mv² ± 1/2 mv² + mg (2r)
- ⇒ 1/2 mv² > 1/2 mv² + mg (r2)
- ⇒V ²/2 > 5gr /2
✠ V = √ 5gr ( min velocity required)
• Putting equation (2) in (1)
- ⇒ Tmax = m (5gr) /r + mg
- ⇒ Tmax = 6 mg
✯ At Middle Point :
• By law of conservation of energy
- ⇒ Tm = TL
- ⇒ 1/2 mv² + mg(r) = 1/2 mv²
- ⇒ 1/2 mv² > m(√5gr) ² - mgr
- ⇒ 1/2 mv² > 5mgr/ 2 - mgr
- ⇒ 1/2mv² > 3mgr/2
- ⇒ Vm = √ 3 great
- ⇒ T > m ( 3gr) /r + mg cosθ
- ⇒ T > 3 mg
✠ Note :
- ⇒ Required Diagram is in attachment :D
_____________________________
Attachments:
Answered by
2
Explanation:
I attached one picture moderator please refer it
Attachments:
Similar questions