Physics, asked by Anonymous, 3 months ago

Q] Derive an expression for the difference in tensions at highest and lowest point for a
particle performing vertical circular motion​

Answers

Answered by BrainlyVanquisher
256

✠ Question Given :

  • Derive an expression for the difference in tensions at highest and lowest point for a particle performing vertical circular motion.

✠ Required Solution :

• At Diagram :

  • ⇒ T - mgCosθ = mv²/ R ( centrifugal force)

  • ⇒ T = mv²/ R - mgCosθ

✯ At Highest Point :

• ( θ = 180° , Cos180° = -1 )

  • ⇒ T min = mv²/R - mg

• For string not to be sla.ck

  • ⇒ T min > 0 ( looping to loop)

  • ⇒ mv²/R - mg > 0

  • ⇒ V = √ rg

✯ At Lowest Point :

  • ⇒ ( Cos180°= +1 , θ = 0 )

  • ⇒ Tmax = mv²/R + mg ____ (eq1)

• Apply conservation of energy

  • ⇒ 1/2 mv² ± 1/2 mv² + mg (2r)

  • ⇒ 1/2 mv² > 1/2 mv² + mg (r2)

  • ⇒V ²/2 > 5gr /2

✠ V = √ 5gr ( min velocity required)

• Putting equation (2) in (1)

  • ⇒ Tmax = m (5gr) /r + mg

  • ⇒ Tmax = 6 mg

✯ At Middle Point :

• By law of conservation of energy

  • ⇒ Tm = TL

  • ⇒ 1/2 mv² + mg(r) = 1/2 mv²

  • ⇒ 1/2 mv² > m(√5gr) ² - mgr

  • ⇒ 1/2 mv² > 5mgr/ 2 - mgr

  • ⇒ 1/2mv² > 3mgr/2

  • ⇒ Vm = √ 3 great

  • ⇒ T > m ( 3gr) /r + mg cosθ

  • ⇒ T > 3 mg

✠ Note :

  • ⇒ Required Diagram is in attachment :D

_____________________________

Attachments:
Answered by vempatapupadmaja31
2

Explanation:

I attached one picture moderator please refer it

Attachments:
Similar questions