Physics, asked by bkhn095, 7 months ago

Q- Divergence of r / r3 is (a) zero at the origin (b) zero everywhere (c) zero everywhere except the origin (d) nonzero everywhere

Answers

Answered by sudeshnaDe
0

Answer:

the answer is C I think

Hope it helps you.

Answered by pulakmath007
70

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO FIND THE CORRECT OPTION

 \displaystyle \sf{ \nabla \bigg( \frac{ \vec{r}}{ {r}^{3} } \bigg) }  \:   \:  \: \: is

(a) zero at the origin

(b) zero everywhere

(c) zero everywhere except the origin

(d) nonzero everywhere

CALCULATION

Here

 \sf{ \vec{r} = x \hat{i} + y \hat{j} + z \hat{k}  \: }

So

  \displaystyle \:  \sf{ r =  | \vec{r}|  =  \sqrt{ {x}^{2} +  {y}^{2}  +  {z}^{2}  }  = \:  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ \frac{1}{2} }  \: }

 \implies \displaystyle  \sf{  {r}^{3}   = \:  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ \frac{3}{2} }  \: }

So

 \displaystyle \sf{ \frac{ \vec{r}}{ {r}^{3} } \:   = \: {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \times (x \hat{i} + y \hat{j} + z \hat{k} ) }

So

 \displaystyle \sf{ \nabla \bigg( \frac{ \vec{r}}{ {r}^{3} } \bigg) }

  = \displaystyle \sf{  \frac{ \partial}{ \partial x} \bigg [  x{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] +  \frac{ \partial}{ \partial y} \bigg [  y{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] \:  +\frac{ \partial}{ \partial z} \bigg [  z{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] \: }

Now

 \displaystyle \sf{  \frac{ \partial}{ \partial x} \bigg [  x{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] }

  = \displaystyle \sf{ \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ]  + x.2x.  \frac{ - 3}{2} \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{5}{2} } \bigg ] \: }

  = \displaystyle \sf{ \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ]   - 3 {x}^{2} \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{5}{2} } \bigg ] \: }

So

 \displaystyle \sf{  \frac{ \partial}{ \partial x} \bigg [  x{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] } = \displaystyle \sf{ \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ]   - 3 {x}^{2} \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{5}{2} } \bigg ] \: }

Similarly

 \displaystyle \sf{  \frac{ \partial}{ \partial y} \bigg [  y{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] } = \displaystyle \sf{ \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ]   - 3 {y}^{2} \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{5}{2} } \bigg ] \: }

And

 \displaystyle \sf{  \frac{ \partial}{ \partial z} \bigg [  z{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] } = \displaystyle \sf{ \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ]   - 3 {z}^{2} \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{5}{2} } \bigg ] \: }

So

 \displaystyle \sf{ \nabla \bigg( \frac{ \vec{r}}{ {r}^{3} } \bigg) }

  = \displaystyle \sf{  \frac{ \partial}{ \partial x} \bigg [  x{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] +  \frac{ \partial}{ \partial y} \bigg [  y{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] \:  +\frac{ \partial}{ \partial z} \bigg [  z{({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] \: }

  = \displaystyle \sf{ 3\bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ]   - 3 ({x}^{2}  +  {y}^{2}  +  {z}^{2} )\bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{5}{2} } \bigg ] \: }

  = \displaystyle \sf{ 3\bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ]   - 3 \bigg [  {({x}^{2} +  {y}^{2}  +  {z}^{2})}^{ -  \frac{3}{2} } \bigg ] \: }

 =  \sf{0}

So in everywhere

 \displaystyle \sf{ \nabla \bigg( \frac{ \vec{r}}{ {r}^{3} } \bigg) } = 0

RESULT

The required answer is - ( b) ZERO EVERYWHERE

Similar questions