Math, asked by H0T, 2 months ago

Q) Division of a polynomial by monomial :

8(x³y²z²+x²y³z²+x²y²z³)÷2x²y²z²
 \huge \rm \red{no \: spam}

Answers

Answered by sahilsharma705011
0

Answer:

2(x+y+z)

Step-by-step explanation:

please give me thanks and mark me brilient ☺️

Attachments:
Answered by Ҡαηнα
44

Answer :

  • 4 ( x + y + z )

Question :

  • 8(x³y²z²+x²y³z²+x²y²z³) ÷ 2x²y²z²

To do :

  • Division of a polynomial by monomial.

Using :

  1. Distributive Law.
  2. Normal Divide.

Solution :

Using Formula no. 1 :

  \rm\red{8(x {}^{3} y {}^{2} z {}^{2} +x {}^{2} y {}^{3} z {}^{2} +x {}^{2} y {}^{2} z {}^{3} )\div2x {}^{2} y {}^{2} z {}^{2} } \\  \\  =  \rm8(x {}^{3} y {}^{2} z {}^{2} +x {}^{2} y {}^{3} z {}^{2} +x {}^{2} y {}^{2} z {}^{3})\div \frac{1}{2x{}^{2}y{}^{2}z{}^{2}} \\ \\  \rm   = \frac {8x{}^{3}y{}^{2}z{}^{2}}{2x{}^{2}y{}^{2}z{}^{2}} +  \frac{8x{}^{2}y{}^{3}z{}^{2}}{2x{}^{2}y{}^{2}z{}^{2}} +  \frac{8x{}^{2}y{}^{2}z{}^{3}}{2x{}^{2}y{}^{2}z{}^{2}} \\  \\  \rm = 4x + 4y + 4z \\  \\  \large \rm \green{  = 4(x + y + z)}

Using Formula no. 2 :

  \rm\pink{8(x {}^{3} y {}^{2} z {}^{2} +x {}^{2} y {}^{3} z {}^{2} +x {}^{2} y {}^{2} z {}^{3} )\div2x {}^{2} y {}^{2} z {}^{2}} \\ \\  \gray{ \bigg( 8(x{}^{3}y{}^{2}z{}^{2}+x{}^{2}y{}^{3}z{}^{2}+x{}^{2}y{}^{2}z{}^{3})  =8x{}^{2}y{}^{2}z{}^{2}(x + y + z) \bigg)}  \\  \\ \rm   = \frac {8x{}^{2}y{}^{2}z{}^{2}(x + y + z)}{2x{}^{2}y{}^{2}z{}^{2}} \\  \\  \large \rm \blue{  = 4(x + y + z)}

ㅤ∴ The Answer Is :

ㅤㅤㅤㅤ \huge \bigg[ \small \rm\purple{4 ( x + y + z )}\bigg]

Similar questions