Math, asked by hateu70, 1 year ago

Q. Equilateral triangles are drawn on the sides of a right triangle. Prove that the area of the triangle on the hypotenuse is equal to the sum of the areas of the triangles on the other two sides.

Please solve the above question!! ​

Attachments:

Answers

Answered by Anonymous
0

 \huge \underline{ \underline \mathfrak{solution - }}

Given - A  \triangle \: ABC \: In which  \angle \: B = 90 \degreeEquilateral triangles \triangle{BCD \: \triangle CAE \:  \triangle \: ABF }Are drawn on the sides BC, CA and AB respectively.

To prove -

 \{ar( \triangle \: </strong><strong>CAE</strong><strong> </strong><strong>)  = ar( \triangle \: </strong><strong>BCD</strong><strong> </strong><strong>) + ar( \triangle \: </strong><strong>ABF</strong><strong> </strong><strong>)}

Proof -

 \triangle \: </strong><strong>BCD</strong><strong> \:  \triangle \: </strong><strong>CAE</strong><strong> \:  \triangle \:  \:</strong><strong>ABF</strong><strong> </strong><strong>are equiangular and hence similar.

We have

 \frac{ar( \triangle \: BCD)}{ar( \triangle \: CAE )}  +  \frac{ar( \triangle \: ABF )}{ ar( \triangle \: cae)}  =   \frac{ {BC}^{2} }{ {CA}^{2} }  +  \frac{ {AB }^{2} }{ {CA }^{2} }  \\   \implies \frac{ar( \triangle \: BCD ) + ar( \triangle \: ABF )}{ar( \triangle \: CAE )} =  \frac{ {BC}^{2}  +  {AB }^{2} }{ {ca}^{2} }  =  \frac{ {CA }^{2} }{ {CA }^{2} }  = 1

 \implies \: ar( \triangle \: </strong><strong>BCD</strong><strong>) + ar( \triangle \: </strong><strong>ABF</strong><strong> </strong><strong>) = ar( \triangle \: </strong><strong>CAE</strong><strong> </strong><strong>) \\  \  \underline{ \underline \bold{proved}}


BrainlyForever: but how?!
Anonymous: ur SPAMMING
Anonymous: and in comment i think
BrainlyForever: I didn't spam
Anonymous: don't remember actually
BrainlyForever: Hm okay let it go
Anonymous: xD
Anonymous: yep
BrainlyForever: Ok bye
Anonymous: bye
Similar questions