Math, asked by sitakri258, 2 months ago

Q ) . Factorise :-

³√27 - 7 ³√216 + 10⁶√64 + ²√121​

Answers

Answered by Tan201
2

Aim:-

To factorise \sqrt[3]{27}-7\sqrt[3]{216}+10\sqrt[6]{64}+\sqrt[2]{121}.

Solution:-

\sqrt[3]{27}-7\sqrt[3]{216}+10\sqrt[6]{64}+\sqrt[2]{121}

=(27)^{\frac{1}{3}}-7\times(216)^{\frac{1}{3}} + 10\times(64)^{\frac{1}{6}}+(121)^{\frac{1}{2}}

(\sqrt[n]{x} =(x)^{\frac{1}{n}})

(3^3)^{\frac{1}{3}}-7\times(6^3)^{\frac{1}{3}}+10\times(2^6)^{\frac{1}{6}}+(11^2)^{\frac{1}{2}}

(3^3=27, 6^3=216, 2^6=64,11^2=121)

3^{3\times\frac{1}{3}}-7\times6^{3\times\frac{1}{3}}+10\times2^{6\times\frac{1}{6}} + 11^{2\times\frac{1}{2}}

((a^m)^n=a^{mn})

3-(7\times6)+(10\times2)+11

3-42+20+11

11+3+20-42

14-22

-8

Conclusion:-

\sqrt[3]{27}-7\sqrt[3]{216}+10\sqrt[6]{64}+\sqrt[2]{121}=-8

Similar questions