Q. Find :-
(i) <ACB ?
Answers
Given,
angle A = 55°
angle CDB = 100°
angle DCB = 25°
find: angle ACB.
BCD is a triangle
hence, all the angles add up to 180° (interior angle property)
we know 2 angles, so the third angle will be 180-(sum of two angles) = 180-(100+25) = 180°-125° = 55°
angle B = 55°
ABC is a triangle
here, angle C = angle DCB + angle ECD (let angle ECD be x)
hence by angle sum property, in triangle ABC,
angle A+B+C = 180°
55°+55°+25°+x = 180°
x = 180° - (55°+55°+25°)
x = 180° - 135°
x =. 45°
hence angle ACB/C = 25°+45° = 70°. {as angle C = angle DCB+ECD}
hope it helps
have a great day
find :
<ACB ?
Step-by-step explanation:
given points:-
∆ABC ,
<DAE=55°
<DCB=25°
<CDB=100°
BCD=180° ...... (1) [ sum of trigle is 180° ]
< DBC+ <DCB + < CDB =180°
<B + <C + <D=180°
<B + 25° + 100° = 180°
<B + 125° = 180°
<B = 180°- 125°
<B = 55°
<DBC = 55° ..... (2)
∆ ABC = 180° ....(3)
<CAB + < ABC + < ACB = 180°
<A + <B + <C = 180°
55° + 55° + <ACB = 180° ... [ < B = 55° from (2) ]
110° + < ACB = 180°
< ACB = 180° - 110°
<ACB= 70°
FINAL ANSWER <ACB = 70° .