Math, asked by sneha0311, 10 months ago

Q. Find the value of √28.8+ √72 + √43.2÷
√0.2 + √0.3 +√0.5

please tell me the answer of this Q #with explanation​

Answers

Answered by BrainlyHeart751
20

|| ✰✰ ANSWER ✰✰ ||

Values :-

√28.8 = 5.36

√72 = 8.48

✓43.2 = 6.57

√0.2 = 0.44

√0.3 = 0.54

√0.5 = 0.70

Now, let's solve this by using the values

√28.8+ √72 + √43.2 / √0.2 + √0.3 +√0.5

= 20.42 / 1.70

= 12 ( approx )

✪✪ Hence Answered ✪✪

Answered by shadowsabers03
20

Given to find,

\displaystyle\longrightarrow\sf{x=\dfrac {\sqrt{28.8}+\sqrt{72}+\sqrt{43.2}}{\sqrt{0.2}+\sqrt{0.3}+\sqrt{0.5}}\quad\quad\dots (1)}

We must see that,

  • \displaystyle\sf {\sqrt{28.8}=\sqrt{144\times0.2}}

  • \displaystyle\sf {\sqrt{28.8}=\sqrt{144}\times\sqrt{0.2}}

  • \displaystyle\sf {\sqrt{28.8}=12\sqrt{0.2}}

And,

  • \displaystyle\sf {\sqrt{72}=\sqrt{144\times 0.5}}

  • \displaystyle\sf {\sqrt{72}=\sqrt{144}\times \sqrt{0.5}}

  • \displaystyle\sf {\sqrt{72}=12\sqrt{0.5}}

And,

  • \displaystyle\sf {\sqrt{43.2}=\sqrt{144\times0.3}}

  • \displaystyle\sf {\sqrt{43.2}=\sqrt{144}\times\sqrt{0.3}}

  • \displaystyle\sf {\sqrt{43.2}=12\sqrt{0.3}}

Hence (1) becomes,

\displaystyle\longrightarrow\sf{x=\dfrac {12\sqrt{0.2}+12\sqrt{0.5}+12\sqrt{0.3}}{\sqrt{0.2}+\sqrt{0.3}+\sqrt{0.5}}}

12 can be taken common in numerator.

\displaystyle\longrightarrow\sf{x=\dfrac {12(\sqrt{0.2}+\sqrt{0.5}+\sqrt{0.3})}{\sqrt{0.2}+\sqrt{0.3}+\sqrt{0.5}}}

Or,

\displaystyle\longrightarrow\sf{x=\dfrac {12(\sqrt{0.2}+\sqrt{0.3}+\sqrt{0.5})}{\sqrt{0.2}+\sqrt{0.3}+\sqrt{0.5}}}

\displaystyle\longrightarrow\sf {\underline {\underline {x=12}}}

Hence 12 is the answer.

Similar questions