Math, asked by Anonymous, 6 months ago

Q:-Find the value of
 \sqrt{a - b}
if
 \frac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} } - \frac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} } = a + b \sqrt{7}

Answers

Answered by Anonymous
34

❥ʀᴇғᴇʀ ᴛᴏ ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ

❥ʜᴏᴘᴇ ʜᴇʟᴘs ᴜ ᴅᴇᴀʀ

Attachments:
Answered by ItzDeadDeal
12

\red{\bold{\underline{\underline{❥Question᎓}}}}

Q:-Find the value of

\sqrt{a - b}

If

\frac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} } - \frac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} } = a + b \sqrt{7}

\huge\tt\underline\blue{⛶Answer⛶ }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

⟹ \frac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} } - \frac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} } = a + b \sqrt{7}</p><p>

⟹ \frac{(8 + 3 \sqrt{7})(8 + 3 \sqrt{7}) - [(8 - 3 \sqrt{7} )(8 - 3 \sqrt{7}) ]}{(8 + 3 \sqrt{7} )(8 - 3 \sqrt{7} )}

∵{(a + b)}^{2} - {(a - b)}^{2} = 4ab(a+b) </p><p>

⟹ \frac{4 \times 8 \sqrt{7} }{ {(8)}^{2} - {(3 \sqrt{7}) }^{2} } = a + b \sqrt{7}</p><p>

⟹ \frac{32 \sqrt{7} }{64 - 63} = a + b \sqrt{7}</p><p> </p><p>

⟹ \frac{32 \sqrt{7} }{1} = a + b \sqrt{7}

⟹32 \sqrt{7} = a + b \sqrt{7}

⟹0 + 32 \sqrt{7} = a + b \sqrt{7}

On comparing both sides:-

⟹a = 0 \: and \: b = 32

⟹now \: \sqrt{a - b} = \sqrt{0 - 32} = \sqrt{ - 32 } = \sqrt{ - 2 \times 16} = 4 \sqrt{ - 2} = 4 \sqrt{2} i \: [( {i}^{2} = - 1)

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions