Math, asked by nextsuperstar2003, 6 months ago

Q from Definite Integrals​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

i = 5 \int^{2} _{1} \frac{ {x}^{2}  + 4x + 3 - 4x - 3}{ {x}^{2}  + 4x + 3}  dx \\

 i= 5 \int^{2} _{1}(1 -  \frac{4x + 3}{ {x}^{2} + 3x + x + 3 } )dx \\

i =  5\int^{2} _{1}dx  - 5 \int^{2} _{1} \frac{4x + 3}{(x + 3)(x + 1)}dx \\

 i= 5 [x]_{1}^{2}  - 5 \int^{2} _{1} \frac{4x + 3}{(x + 3)(x + 1)} dx \\

i = 5 - 5 \int^{2} _{1} \frac{4x + 3}{(x + 3)(x + 1)} dx \\

let \:  \frac{4x + 3}{(x + 3)(x + 1)} =  \frac{a}{x + 3}   +  \frac{b}{x + 1}  \\

  \implies \frac{4x + 3}{(x + 3)(x + 1)}   =  \frac{(a + b)x + (a + 3b)}{(x + 3)(x + 1)}  \\

 \implies \: a + b = 4 \:  \: and \:  \: a + 3b = 3

Solving these , we get,

 \implies \: a =  \frac{9}{2}  \:  \: and \:  \: b =  -  \frac{1}{2}  \\

Now,

i = 5 - 5 \int^{2} _{1} \frac{9}{2(x + 3)} dx - 5 \int^{2} _{1} \frac{ - 1}{2(x + 1)} dx \\

i = 5 -  \frac{45}{2}  \int^{2} _{1} \frac{dx}{x + 3}  +  \frac{5}{2}  \int^{2} _{1} \frac{dx}{x + 1}  \\

i = 5 -  \frac{45}{2}  [ ln(x + 3) ] ^{2} _{1} -  \frac{5}{2}  [ ln(x + 1) ]^{2} _{1} \\

i = 5 -  \frac{45}{2} [ 2ln(2)  -  ln(3) ] +  \frac{5}{2}  [ ln(3) -  ln(2)  ]

i =5 -  {45}  ln(2)  +  \frac{45}{2}  ln(3)  +  \frac{5}{2}  ln(3)   -  \frac{5}{2}  ln(2)

i  = 5 -  25 ln(2)  + 25 ln(3)  -  \frac{45}{2}  ln(2)

 i = 5 + 25 ln( \frac{3}{2} )  -  \frac{45}{2}  ln(2)  \\

Similar questions