Math, asked by Anonymous, 6 months ago

Q=>Show that :

(i) tan 48° tan 23° tan 42° tan 67° = 1

(ii) cos 38° cos 52° – sin 38° sin 52° = 0​

Answers

Answered by Anonymous
37

HERE IS YOUR ANSWER MATE.....;

(i) tan 48° tan 23° tan 42° tan 67°

We can also write the above given tan functions in terms of cot functions, such as;

tan 48° = tan (90° – 42°) = cot 42°

tan 23° = tan (90° – 67°) = cot 67°

Hence, substituting these values, we get

= cot 42° cot 67° tan 42° tan 67°

= (cot 42° tan 42°) (cot 67° tan 67°)

= 1 × 1 [since cot A.tan A = 1]

= 1

(ii) cos 38° cos 52° – sin 38° sin 52°

We can also write the given cos functions in terms of sin functions.

cos 38° = cos (90° – 52°) = sin 52°

cos 52°= cos (90° – 38°) = sin 38°

Hence, putting these values in the given equation, we get;

sin 52° sin 38° – sin 38° sin 52° = 0

Hope it's Helpful....:)

Answered by MrSmartGuy1729
1

Answer:

 \huge{ \underline{ \boxed{ \bold{ \star{ \blue{ \green{ \orange{ \pink{ \purple{ \red{ \mathfrak{ \pink{ \red{ \orange{ \green{a}{n} }{s} }{w} }{} }{} }{e} }{r} }{} }{} }{} }{} }{} }{} }{} }{} }{}

Refer the attachments pls

Attachments:
Similar questions