Q. if (3sinx + 5cosx) = 5 ,then the value of (5sinx - 3cosx ) is (a)4 ,(b)3 ,(c)2 d(1)
Answers
Answer:
Option (b) is correct
Step-by-step explanation:
Given 3sinx+5cosx=5 ----(1)
On Squaring both sides of the equation (1) , we get
(3sinx+5cosx)²=5²
=> (3sinx)²+(5cosx)²+2(3sinx)(5cosx)=25
=> 9sin²x+25cos²x+2(3sinx)(5cosx)=25
=> 9(1-cos²x)+25(1-sin²x)+2(3sinx)(5cosx)=25
=> 9-9cos²x+25-25sin²x+2(3sinx)(5cosx)=25
=> -9cos²x-25sin²x+2(3sinx)(5cosx)=25-9-25
=> -9cos²x-25sin²x+2(3sinx)(5cosx)=-9
On multiplying both sides by (-1) , we get
=> 9cos²x+25sin²x-2(3sinx)(5cosx)=9
=> (3cosx)²+(5sinx)²-2(3cosx)(5sinx)=3²
=> (3cosx-5sinx)²=3²
=> 3cosx-5sinx =±3
According to the options given,
Option (b) is correct
•••♪
Step-by-step explanation:
Step-by-step explanation:
Given 3sinx+5cosx=5 ----(1)
On Squaring both sides of the equation (1) , we get
(3sinx+5cosx)²=5²
=> (3sinx)²+(5cosx)²+2(3sinx)(5cosx)=25
\begin{lgathered}By\: algebraic\: identity:\:\\ \boxed{(a+b)^{2}=a^{2}+b^{2}+2ab}\end{lgathered}
Byalgebraicidentity:
(a+b)
2
=a
2
+b
2
+2ab
=> 9sin²x+25cos²x+2(3sinx)(5cosx)=25
=> 9(1-cos²x)+25(1-sin²x)+2(3sinx)(5cosx)=25
=> 9-9cos²x+25-25sin²x+2(3sinx)(5cosx)=25
=> -9cos²x-25sin²x+2(3sinx)(5cosx)=25-9-25
=> -9cos²x-25sin²x+2(3sinx)(5cosx)=-9
On multiplying both sides by (-1) , we get
=> 9cos²x+25sin²x-2(3sinx)(5cosx)=9
=> (3cosx)²+(5sinx)²-2(3cosx)(5sinx)=3²
=> (3cosx-5sinx)²=3²
\begin{lgathered}By\: algebraic\: identity:\:\\ \boxed{(a-b)^{2}=a^{2}+b^{2}-2ab}\end{lgathered}
Byalgebraicidentity:
(a−b)
2
=a
2
+b
2
−2ab
=> 3cosx-5sinx =±3