Q.if A and G be A.M. and G.M., respectively between two positive
numbers,prove that the number are A plusminus underroot(A+G)(A-G) .
Answers
Let the 2 positive numbers be a and b .
A is the arithmetic mean .
Arithmetic mean = ( sum of numbers ) / ( number of terms )
A = ( a + b )/2
G is the geometric mean .
Geometric mean = n th root of ( product of numbers )
G = √ab
A ± √( A + G )( A - G )
A ± √( A² - G² )
⇒ ( a + b )/2 ± √( a + b )²/4 - ab )
⇒ ( a + b )/2 ± √( a + b )² - 4 ab )/√4
⇒ ( a + b )/2 ± √( a² + b² - 2 ab )/2
⇒ ( a + b )/2 ± √( a - b )²/2
⇒ ( a + b )/2 ± ( a - b )/2
Either :
( a + b )/2 + ( a - b )/2
= ( 2 a )/2
= a
Or:
( a + b )/2 - ( a - b)/2
⇒ ( b + b )/2
⇒ 2b/2
⇒ b
Hence a , b = A ± √( A + G )( A - G )
ANSWER:-----------
A = ( a + b )/2 G is the geometric mean .
G = √abA ± √( A + G )( A - G )A ± √( A² - G² )
⇒ ( a + b )/2 ± √( a + b )²/4 - ab )
⇒ ( a + b )/2 ± √( a + b )² - 4 ab )/√4
⇒ ( a + b )/2 ± √( a² + b² - 2 ab )/2
⇒ ( a + b )/2 ± √( a - b )²/2
⇒ ( a + b )/2 ± ( a - b )/2
hope it helps:-------
T!—!ANKS!!!