Math, asked by debismita, 1 year ago

Q.If a,b,c,q,r are six complex numbers,such that p/a+q/b+r/c=1+i and a/p+b/q+c/r=0,where i=root(-1),then the value of p^2/a^2+q^2/b^2+r^2/c^2?


anyone please answer this question if you know ☺don't unnecessary answer please.​

Attachments:

Answers

Answered by lja0195251
2

Answer:2

MARK ME AS BRAINLIEST

Step-by-step explanation:

p2/a2+q2/b2+r2/c2=(pa+qb+rc)2−2(pqab+qrbc+rpca)

=(1+i)2−2(pqcabc+qraabc+rpbcab)

=(1+i)2−2abc⋅(pqr)(cr+ap+bq)

As, (ap+bq+cr)=0, our equation becomes\\

p2\a2+q2/b2+r2/c2=(1+i)2

=1+i2+2i=1−1+2i=2i

∴p2a2+q2/b2+r2/c2=2

Answered by shadowsabers03
5

Question:-

If \displaystyle\sf {a,\ b,\ c,\ p,\ q,\ r} are six complex numbers such that,

\displaystyle\sf {\dfrac {p}{a}+\dfrac {q}{b}+\dfrac {r}{c}=1+i}

and,

\displaystyle\sf {\dfrac {a}{p}+\dfrac {b}{q}+\dfrac {c}{r}=0}

where \displaystyle\sf {i=\sqrt{-1}}, then find the value of,

\displaystyle\sf {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}.}

\quad

Answer:-

\quad

\displaystyle\large\boxed {\sf {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}=2i}}

\quad

Solution:-

\quad

Well,

\quad

\displaystyle\longrightarrow\sf {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}=\left (\dfrac {p}{a}+\dfrac {q}{b}+\dfrac {r}{c}\right)^2-2\left (\dfrac {pq}{ab}+\dfrac {qr}{bc}+\dfrac {pr}{ac}\right)}

\quad

\displaystyle\longrightarrow\sf {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}=(1+i)^2-2\left (\dfrac {pqc}{abc}+\dfrac {aqr}{abc}+\dfrac {pbr}{abc}\right)}

\quad

\displaystyle\longrightarrow\sf {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}=(1+i)^2-\dfrac {2}{abc}\left (\dfrac {pqrc}{r}+\dfrac {apqr}{p}+\dfrac {pqbr}{q}\right)}

\quad

\displaystyle\longrightarrow\sf {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}=(1+i)^2-\dfrac {2pqr}{abc}\left (\dfrac {a}{p}+\dfrac {b}{q}+\dfrac {c}{r}\right)}

\quad

\displaystyle\longrightarrow\sf {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}=(1+i)^2-\dfrac {2pqr}{abc}\left (0\right)}

\quad

\displaystyle\longrightarrow\sf {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}=(1+i)^2}

\quad

\displaystyle\longrightarrow\sf {\underline {\underline {\dfrac {p^2}{a^2}+\dfrac {q^2}{b^2}+\dfrac {r^2}{c^2}=2i}}}

Similar questions