Math, asked by kunalchaudhari019, 1 month ago


Q. If kx+2y-1=0 and 6x-4y+2=0 are identical lines
determine k,
a) -3
b) -1/3
c) 1/3
d) 3​

Answers

Answered by aryan073
10

Given :

• The given identical lines are :

kx+2y-1=0

6x-4y+2=0

To Find :

•The value of k=?

Formula :

If the given two lines are identical lines ,then

\pink\bigstar\boxed{\bf{\dfrac{a_{1} }{a_{2} }= \dfrac{b_{1} }{b_{2} } = \dfrac{c_{1} }{c_{2} } }}

Solution :

The given identical lines are :

kx+2y-1=0

6x-4y+2=0

Values:

\bullet\bf{a_{1} =k}

\bullet\bf{a_{2}=6}

\bullet\bf{b_{1}=2}

\bullet\bf{b_{2}=-4}

\bullet\bf{c_{1}=-1}

\bullet\bf{c_{2}=2}

By using Formula :

\implies\sf{\dfrac{a_{1} }{a_{2}}=\dfrac{b_{1}}{b_{2}} =\dfrac{c_{1} }{c_{2} }}

Substituting the values :

\implies\sf{\dfrac{k}{6}=\dfrac{2}{-4}=\dfrac{-1}{2}}

\implies\sf{\dfrac{k}{6}=-\dfrac{1}{2}}

\implies\sf{2k=-6}

\implies\sf{k=\dfrac{-6}{2} }

\implies\boxed{\sf{k=-3}}

The value of k is -3

Similar questions