Math, asked by Anonymous, 9 months ago

Q:-If tan θ =12/5 ,then show that 5 cos θ + 12 sin θ = 13

Answers

Answered by Anonymous
35

\pink{\bold{\underline{ ✪ UPSC-ASPIRANT✪ }}}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-If tan θ =12/5 ,then show that 5 cos θ + 12 sin θ = 13

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

════════════XXX═════════════

⟹tan \theta =  \frac{p}{b}  =  \frac{12}{5}

⟹ {h}^{2}  =  {p}^{2}  +  {b}^{2}

⟹ {h}^{2}  = 144 + 125 = 169

⟹h =  \sqrt{169}  = 13

⟹cos \theta =  \frac{b}{h}  =  \frac{5}{13}

⟹sin \theta =  \frac{p}{h}  =  \frac{12}{13}

Now \: 5 \times  \frac{5}{13}  + 12 \times  \frac{12}{13}  = 13

⟹ \frac{25}{13}  +  \frac{144}{13}  = 13

⟹ \frac{169}{13}  = 13

13 = 13

From above it is proved that tan\theta=12/5

════════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
3

Step-by-step explanation:

Answer

Step-by-step explanation:

so 5 cosx = 13-12 sinx

squaring on both sides we get,

25 cos²x = 169 + 144 sin²x - 312 sinx

in case of cos²x we substitute (1-sin²x), as sin²x + cos²x = 1

equation will be 169 sin²x - 312 sinx + 144 = 0

after using quadratic formula we get sinx = 312/338

so sinx = 12/13.

Similar questions