Math, asked by itgo12, 5 months ago

Q:-If tan θ =12/5 ,then show that 5 cos θ + 12 sin θ = 13

Answers

Answered by Anonymous
47

Answer:

 \sf \: The\: property \:is \:shown\: in  \\  \tt \: a+b=b+a is the \\  \tt Commutative \:Property \\ \tt of Addition. \\ \tt  1) The commutative \:property \\  \tt of\: addition \:states\: that \:while \\ \tt  adding\: any\: of \:the \:two \:numbers \\ \tt  in\: any \:order\: that\: won't \:affect\: the \\   \tt \: final\: answer \:of \:the\: addition \\

Answered by Anonymous
174

Step-by-step explanation:

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-If tan θ =12/5 ,then show that 5 cos θ + 12 sin θ = 13

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

════════════XXX═════════════

⟹\bold{tan \theta =  \frac{p}{b}  =  \frac{12}{5}}

⟹ \bold{{h}^{2}  =  {p}^{2}  +  {b}^{2}}

⟹\bold{ {h}^{2}  = 144 + 125 = 169}

⟹\bold{h =  \sqrt{169}  = 13}

⟹\bold{cos \theta =  \frac{b}{h}  =  \frac{5}{13}}

⟹\bold{sin \theta =  \frac{p}{h}  =  \frac{12}{13} }

\bold{Now \: 5 \times  \frac{5}{13}  + 12 \times  \frac{12}{13}  = 13}

⟹\bold{ \frac{25}{13}  +  \frac{144}{13}  = 13}

⟹\bold{ \frac{169}{13}  = 13}

\bold{13 = 13}

\bold{\red{From\: above\: it\: is\: proved \:that [tex]tan\theta=12/5}}

════════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Similar questions