Math, asked by gola49, 7 months ago

Q:-If tan θ =12/5 ,then show that 5 cos θ + 12 sin θ = 13​

Answers

Answered by Anonymous
168

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-If tan θ =12/5 ,then show that 5 cos θ + 12 sin θ = 13

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

════════════XXX═════════════

⟹\bold{tan \theta =  \frac{p}{b}  =  \frac{12}{5}}

⟹ \bold{{h}^{2}  =  {p}^{2}  +  {b}^{2}}

⟹\bold{ {h}^{2}  = 144 + 125 = 169}

⟹\bold{h =  \sqrt{169}  = 13}

⟹\bold{cos \theta =  \frac{b}{h}  =  \frac{5}{13}}

⟹\bold{sin \theta =  \frac{p}{h}  =  \frac{12}{13} }

\bold{Now \: 5 \times  \frac{5}{13}  + 12 \times  \frac{12}{13}  = 13}

⟹\bold{ \frac{25}{13}  +  \frac{144}{13}  = 13}

⟹\bold{ \frac{169}{13}  = 13}

\bold{13 = 13}

\bold{\red{From\: above\: it\: is\: proved \:that [tex]tan\theta=12/5}}

════════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
3

Let us consider , 5cosΘ + 12sinΘ = 13

Dividing all sides by 13...

We get,

\bf\red{\underline{}} \frac{5cos \alpha  + 12sin \alpha }{13}  = 1 \\  \\ \bf\red{\underline{}} \frac{5cos \alpha }{13}  +  \frac{12sin \alpha }{13}  = 1 \\  \\ \bf\large\red{\underline{ {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1}} \\  \\

Therefore,

sinΘ = 12/13

cosΘ = 5/13

➜tanΘ = sinΘ/cosΘ

 =  > tan \:  \alpha  = \bf\large\red{\underline{}} \frac{ \frac{12}{13} }{ \frac{5}{13} }  \\  \\  = \bf\large\red{\underline{}}> tan  \alpha  =  \frac{12}{5}

tanΘ = 12/5

Similar questions