Q:-If tan θ =12/5 ,then show that 5 cos θ + 12 sin θ = 13
Answers
Q:-If tan θ =12/5 ,then show that 5 cos θ + 12 sin θ = 13
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
════════════XXX═════════════
════════════XXX═════════════
HOPE IT HELPS YOU..
_____________________
Thankyou:)
Step-by-step explanation:
tanθ=
b
p = 512⟹h2=p2+b2⟹ \bold{{h}^{2} = {p}^{2} + {b}^{2}}⟹h
2
=p
2
+b
2
⟹h2=144+125=169⟹\bold{ {h}^{2} = 144 + 125 = 169}⟹h
2
=144+125=169
⟹h=169=13⟹\bold{h = \sqrt{169} = 13}⟹h=
169
=13
⟹cosθ=bh=513⟹\bold{cos \theta = \frac{b}{h} = \frac{5}{13}}⟹cosθ=
h
b
=
13
5
⟹sinθ=ph=1213⟹\bold{sin \theta = \frac{p}{h} = \frac{12}{13} }⟹sinθ=
h
p
=
13
12
Now5×513+12×1213=13\bold{Now \: 5 \times \frac{5}{13} + 12 \times \frac{12}{13} = 13}Now5×
13
5
+12×
13
12
=13
⟹2513+14413=13⟹\bold{ \frac{25}{13} + \frac{144}{13} = 13}⟹
13
25
+
13
144
=13
⟹16913=13⟹\bold{ \frac{169}{13} = 13}⟹
13
169
=13
13=13\bold{13 = 13}13=13