Math, asked by Anonymous, 1 month ago

Q). If the Adjacent sides of a Rectangle are in the ration 5:12 and If the Perimeter of the Rectangle is 34 cm, Find the Length of the diagonals ? ​

Answers

Answered by Anonymous
882

Given : If the Adjacent sides of a Rectangle are in the ration 5:12 & If the Perimeter of the Rectangle is 34 cm.

To Find : Find the Length of the diagonals ?

_________________________

Solution : let the breadth and length of the rectangle be 5x & 12x.

~

\underline{\frak{As ~we ~know~ that~:}}

  • \boxed{\sf\pink{Perimeter ~of~ rectangle~=~2\bigg(l~+~b\bigg)}}

~

\qquad{\sf:\implies{2\bigg(l ~+~ b\bigg) ~= ~34cm}}

\qquad{\sf:\implies{2\bigg(12x ~+~ 5x\bigg) ~= ~34cm}}

\qquad{\sf:\implies{17x~=~\cancel\dfrac{34}{2}}}

\qquad{\sf:\implies{17x~=~17}}

\qquad{\sf:\implies{x~=~\cancel\dfrac{17}{17}}}

\qquad:\implies{\underline{\boxed{\frak{\purple{x~=~1}}}}}

~

Therefore,

  • Breadth = 5x => 5cm
  • Length = 12x => 12cm

~

\underline{\frak{As ~we ~know~ that~:}}

  • \underset{\blue{\bf Pythagoras\ Theorem}}{\underbrace{\boxed{\frak{\pink{Diagonal~=~\sqrt{(length^2~+~breadth^2)}}}}}}

~

\qquad{\sf:\implies{Diagonal~=~\sqrt{(12^2~+~5^2)}}}

\qquad{\sf:\implies{Diagonal~=~\sqrt{(144~+~25)}}}

\qquad{\sf:\implies{Diagonal~=~\sqrt{169}}}

\qquad:\implies{\underline{\boxed{\frak{\pink{Diagonal~=~13m}}}}}

~

Hence,

\therefore\underline{\sf{The ~length ~of ~the ~diagonal~is~\bf{\underline{13m}}}}

Similar questions