Math, asked by Alexaltamas983, 1 year ago

Q.if X+1/X=9, find the value of X4+1/X4?

Answers

Answered by mysticd
4

Answer:

 x^{4}+\frac{1}{x^{4}}=6239

Step-by-step explanation:

 Given\:x+\frac{1}{x}=9\:---(1)

/* On Squaring both sides, we get

 \left(x+\frac{1}{x}\right)^{2}=9^{2}

\implies x^{2}+\frac{1}{x^{2}}+2\times x\times \frac{1}{x}=81

\implies x^{2}+\frac{1}{x^{2}}+2=81

\implies x^{2}+\frac{1}{x^{2}}=81-2

\implies x^{2}+\frac{1}{x^{2}}=79\:--(2)

/* On Squaring equation (2), we get

x^{4}+\frac{1}{x^{4}}+2=79^{2}

x^{4}+\frac{1}{x^{4}}+2=6241

x^{4}+\frac{1}{x^{4}}=6241-2\\=6239

Therefore,

 x^{4}+\frac{1}{x^{4}}=6239

•••♪

Similar questions